IPv6 deployment at Imperial

Phil Mayers <p.mayers@imperial.ac.uk>
About Imperial

- 14,700 students, 8,000 staff
- Focused on science, engineering, medicine and business
- 6 major campuses in London, also Silwood Park, and medical sites
- Various downstream customers (Museums, NHS trusts, Learned societies)
- Substantial e-Science work - IT infrastructure is important
Campus network

- 60k devices on-net including PCs, WiFi/BYOD, SCADA, VoIP, etc.
- 18k simultaneous wifi users at peak
- Internet to campus throughput ~2Gbit/s average, ~6Gbit/s peak (Oct 2016)
 - This is just the “normal” traffic - web, email, etc. - excludes high-throughput users
Research traffic

- e-Science big hitters - High Energy Physics group
 - Increasing focus on IPv6 for this area
 - Rates of up to 40Gbit/s - could easily go higher
Story of our IPv6

- Long process - started experimenting in 2003
 - Initially using IP6-in-IP tunnel
 - Upstream provider was outsourced at the time - little appetite
- Mid 2008 - Deployments to select servers & test subnets
- April 2010 - Upstream native IPv6
- June 2010 - Mass deployment to clients started
- Early 2011 - Big push for World IPv6 day
 - Enabled the college website, email, DNS
- 2011-2012 - Servers & service deployment ongoing
- Sep 2013 - WiFi platform IPv6-enabled
- Spanned several generations of equipment & procurement
IPv6 day - 8 June 2011

- First big test - coordinated, worldwide enabling of IPv6
 - Google, Facebook, etc.
- Pushed hard - along with others in UK HE community - to participate
- College website was v6-enabled via v6-to-v4 NAT
- Deployment to client networks already ~75% complete
- On the day:
 - ~15% of traffic IPv6, ~5,500 machines doing IPv6 to the internet
 - A couple of minor issues relating to path MTU on the website hack
 - No issues raised by customers or externals
- Comprehensive success, in our view
 - Following years IPv6 launch was even easier - work already done
Current status

- Deployed - production ready, full SLA coverage equivalent to IPv4
- All new services in datacentre have dual-stack SLB by default
 - No reported issues
- Older COTS / ERP stack software not retrofitted
 - No “certification” from vendors - Grr!
- Various cloud services accessed predominantly over IPv6
 - Office 365
- IPv6 parity mandatory in all equipment procurement
 - Not yet filtered through to software & services procurement - ongoing
Results

- Average 20-40% of traffic by volume over IPv6
 - Depends on time, and counting methodology
 - 26 Oct 13:00 - 27 Oct 13:00, a typical 24h, no big eScience runs
 - IPv4 - 25TB, 27Gpkt, 208M flows
 - IPv6 - 6.5TB, 7.5Gpkt, 60M flows

- Large content providers like Google/Youtube, Facebook significant
 - Same period, major IPv6 sources - Google 3.7TB, Facebook 0.6TB

- As noted, Office 365 infrastructure primarily accessed over IPv6
 - Exchange, Sharepoint, Project, Lync
e-Science

- High Energy Physics dataflows - growing rapidly
- Fri Oct 28th @ 13:30 - 7Gbit/s IPv6
 - Not the biggest we have seen
 - Just the one I have a graph for...
- CERN & Brunel
- WLCG planning for IPv6-only capability in the near future
- Sheer quantity of compute and storage has exceeded IPv4 capacity
Cloud services & Latency

- Latency to Office 365
- Banding - different MS DCs
- Very little v4/v6 difference
- Similar results to other cloud providers
Why do this?

- Imperial is fortunate enough to have adequate IPv4 space - so why bother?
- We **will** run out of address space
 - Fortunate as we are, device count growth rate is astonishing
 - Projected WiFi BYOD growth could consume all remaining v4 IPs in ~5 years
 - IoT concerns - assuming the Internet hasn’t been destroyed by hacked toasters of course
- **Avoidance of surprise**
 - Research tends to generate new requirements on short notice
 - Avoid being the blocker for your customers
 - Example: HEP community moving to IPv6 - IPv4 has run out for them!
- **Don’t believe in being last**
- **Done right, the cost is not high**
 - Conversely, cost of having to do a rapid deployment could be significant
Choices we made

- **Address configuration model - SLAAC not DHCP**
 - DHCPv6 not widely available on clients at the time of deployment
 - SLAAC not overly problematic, no real impetus to move now
 - Manual well-known suffixes for servers

- **Dual-stack - no current use-case for IPv6-only / NAT64 / 464xlat**
 - But watching intently

- **SLB - dual-stack VIP, single family backend**

- **Parity - same network equipment, paths, upstream**
 - Final config - the rollout had various interim elements

- **Whole network, not just select parts - student residences as well**
 - Xbox One IPv6 gaming support - exemplar in the field, better UX for customers
SLAAC vs. DHCPv6

- No interest in the protocol drama any more
 - Please don’t ask me about it...
- SLAAC was available and worked for us at the time
 - DHCPv6 issues with L3VPN relay - software bug, not inherent
- Clients self-generate addresses, plural
 - These days, very likely >1 - privacy addressing
- Issues to consider
 - Need to track address usage for abuse, legal reasons
 - Addresses not “pretty” or “memorable”
 - Reverse DNS - not important for clients IMO
 - DNS-over-IPv6 - RFC 6106 sparsely supported
 - Address count growth
Address tracking

- Need to track (time, IP) -> machine mapping for abuse & legal reasons
- Lots of solutions
- Router neighbour tables
 - See for example https://nav.uninett.no/wiki/start
- DHCPv6 server logs
 - If using DHCPv6 of course
- Layer-2 switch FHS / radius accounting logs
 - Vendor-dependent
- Directly observe L2 ND/NS via span/mirror, or sampling e.g. sFlow
 - See for example https://github.com/jimdigriz/slaacer
Address tracking at Imperial

- **Router neighbour tables**
 - Bespoke system, pre-dates IPv6 rollout, ARP for IPv4

- **Postgresql DB with inet datatype - transparently supported IPv6**

- **Consider tracking the IPv6 link-local addresses**
 - Clients may talk to each other over link-local
 - You might find you have to trace abuse via LL

- **Watch for address count growth**
 - Temp/privacy addresses - many more than you’d expect in IPv4
 - Certain vendors cycle these addresses quite rapidly... not clear why
 - We see rare cases of extreme address counts - not operationally problematic, but odd...
 - Cheap & fast storage solve the database size issue for us
Address tracking - unusual clients

- Real client
- Lots of addresses
- >5000 in 24 hours
- No idea why...

¯_(ツ)_/¯
Dual-stack rollout

- Currently no driver for IPv6-only subnets
 - On 3-year timescale we expect dual-stack to be pervasive
- Could alleviate pressure in some upcoming areas
 - Container-based services, container-based desktops (app virtualisation)
 - SCADA? - problematic, barely does IPv4 properly
 - IoT - potentially, but so far appalling software quality, dreading poor IPv6 support
- IPv6-only WiFi would be a big help, as the client count is very high
 - Needs to be very reliable though - perception is it’s not quite there yet on BYOD
 - Perhaps that’s untrue? Comments welcome!
- Core routing - next slide
Core routing

- Separate OSPFv2 & v3, BGP, LDP for MPLS L3VPN
 - /112 for router p2p if you really want to know; aesthetically pleasing!
- Only notable element - MPLS L3VPN used for segmentation
 - Bulk of edge networks are therefore 6vPE w/ IPv4 provider control-plane
 - Switch to native IPv6 via “normal” IGP/BGP on leaving firewalls
SLB

- Previous SLB vendor supported IPv6 - used for v6 launch
 - No real issues, product range now EoL
- Current vendor supports IPv6 very well
- SLB services are dual-stack at client-facing VIP
 - Random sample ~9k IPv6 connections, ~14k IPv4 connections
- Backends are mostly v4-only
 - SLB does v6-v4 translation, adds X-Forwarded-For: HTTP header
 - Choice of v4 backend based on lowest upheaval during transition
- Going forward, some backends are v6-only backend
 - Mail relays, IPAM - controlled by my team, easy to do
 - See also https://fud.no/talks/ - v4 as a “only on SLB VIP” model
Whole Network - Wireless & Residences

- Wireless - one of the last client systems to deploy IPv6
 - Start of academic year 2013
- Wireless vendor had no RA guard
 - Proved especially problematic on WiFi - Internet Connection Sharing to wired
 - Clients would be trying broken IPv6
 - Will discuss later
- Had to use DNS AAAA-blacklist
- Solved in later release - works now without issues
- Residences - no real issues despite prevalence of unmanaged devices
 - RA guard and DHCP snooping a MUST however!
 - Did allow Teredo back in for Xbox One p2p fallback networking
 - Closely watching IETF stuff for appropriate IPv6 residence security posture
Issues faced

- Important to note: these were not huge problems for us
 - Context only, do not be discouraged - be aware
- Layer-2 first-hop security
 - Rogue router advertisements and DHCP servers
 - Usually accidental via Internet Connection Sharing
- Broken external websites
 - IPv6 in DNS but not responding - browser-based happy eyeballs solved this
 - Answering over IPv6 but with bad content - sadly, still seeing this
- IPv6 do-not-serve blacklists at content providers
- Address counts & table sizes
- Bespoke systems
Layer-2 first-hop security

- Internet Connection Sharing
 - a.k.a Infernal Connection Shenanigans - least helpful “feature” ever?
 - Rogue RA/DHCPv6 from connectivity via tunnels, or other wired/wireless interfaces

- Native IPv6 ameliorated this
 - All hail RFC 3484/6724 address selection rules
 - Also, set native router-preference to “high” just in case

- If you lack native IPv6 and RA/DHCPv6 guard, this can be a problem

- Various platform limits, but finally got “stateless” DHCPv6 & RA guard
 - ACL dropping ICMPv6 type 134 - hardware ACL TCAM hassles, overcame these
 - DHCPv6 dropped by UDPv6 port match - simpler

- Mandate relevant sections of RIPE-554 in procurement
Broken websites

- One of the few areas which generate ongoing support load
 - Very infrequent, but non-zero
- External websites which are reachable over IPv6 but serving invalid content
- .eu I am looking at you
- .gov you can stop smiling as well
- Customers perceive your network is broken
 - “Works from my phone / home ADSL / other places”
- Increased number of IPv6 access networks will hopefully stop this
- Very, very rarely, we “fix” this using DNS RPZ to strip the AAAA
 - Dislike doing this intensely, hides the problem, misaligned incentives
IPv6 blacklists

- Various providers - notably Google and Facebook
- Detect clients with broken IPv6 with various black magic tools
 - Backtrack to the client DNS server
 - Stop serving AAAA to that DNS server
- End sites just see a drop in IPv6 usage
- No real feedback for end sites on triggering events
 - Understandable - content providers would incur a lot of work and have to expose potentially sensitive logging information
- Not sure these are still in use? Issue largely historic for Imperial
Blacklist triggers

- DNS server handles disparate clients
 - In our case, main Imperial network as well as downstream unmanaged customers
 - Solution: split them onto separate resolver query sources

- Clients in sections of the network with spotty IPv6
 - Such as the aforementioned wireless issues
 - Solution: deploy the IPv6!
 - Alternatively, AAAA-blacklist - very short term, hides not solves the problem

- Lack of parity
 - Example: excessive loss, latency on IPv6 compared to IPv4
 - Solution: aim for parity

- Combination of first two solved our issues
Table sizes

- IPv6 addresses are 4x the size of an IPv4 address
 - Devices may have comparatively limited IPv6 FIB
 - And/or - FIB may be statically partitioned with low IPv6 capacity
 - Overrun can require a reboot to fix
- Consider the number of adjacent hosts
- Check with your vendor for scaling and dynamic/static limits
 - Be very careful of misleading claims about concurrent v4/v6 routing and adjacency sizes
 - Does a host consume a route? Does a v6 host/route consume 2 or 4 v4 host/route slots?
- Cause of one outage at our site - FIB exception on older platform
 - Triggered by wireless network - very busy, lots of connected addresses
- Suggest budgeting for at least 3x number of connected clients as IPv6 addresses
Neighbour churn

- It will be busier than IPv4
- Watch control-plane load
 - Default ND refresh timers may be inappropriate
- ~18k associated WiFi clients leads to:

```bash
wlan-rtl#sh ipv6 neighbors vrf 0 statistics
IPv6 ND Statistics
Entries 27815, High-water 30369, Gleaned 30329332, Scavenged 44275425, Static 0
Entry States
  INCM 144  REACH 11668  STALE 13266  GLEAN 1681  DELAY 171  PROBE 85
Resolutions
  Requested 69387649, timeouts 140350557, resolved 28376295, failed 48390005
  In-progress 144, High-water 274, Throttled 0, Data discards 26297438
NUD
  Requested 194464215, timeouts 47865620, resolved 179439572, failed 15924536
  In-progress 256, high-water 256, throttled 32198849, current queue 1091, queue high-water 5736
wlan-rtl#]
```

- ...and the multiplier will likely go up over time
Bespoke systems

create table log (ip varchar(15) ...);
drop will_to_live;

- Try hard not to have these problems ;o)
- Fortunate at Imperial - most systems using postgres/inet, transparent to IPv6
- Occasional tweaks to client-side validation e.g. webapp javascript
- One example: bespoke IPAM system, feeds DNS, DHCP, firewall
 - ~300 lines of code, ~1 hour to IPv6-enable
 - Almost entirely form validation
Support costs

- Very low - modern IPv6 stacks and browsers with happy eyeballs are well behaved
- Very rare to investigate an IPv6 issue - about the same as IPv4 once mature
 - 26 incidents to our Service Desk since 1 Jan 2016 mentioning IPv6
 - Vast majority unrelated on postmortem analysis
 - Couple of incidents of IPv4 being broken and only connectivity over IPv6!
- No substantial engineering cost to maintaining IPv6 in our experience
 - Marginal cost ensuring parity in procurement, but that’s infrequent activity
- Educate front-line staff that “disabling IPv6” is not a solution
 - Rare problems should be known and solved, not hidden
Procurement

- Hopefully you have been mandating and testing for IPv6 parity for some time
- If not, start now
- RIPE-554 an excellent start, but not a panacea
 - You will have to test, and to test you’ll need knowledge
- Signal - firmly - to vendors that you won’t accept 2nd class IPv6
 - Without those signals, the market may backslide
- Ensure you have a working rollout or testbed, to compare against
What now?

● If you have already deployed IPv6 - such as Imperial:
 ○ Identify areas where coverage isn’t great - old software, equipment
 ○ Correlate with refresh cycles
 ○ Identify route forward - deprecate, replace, upgrade/fix, ignore
 ○ Continue to grow coverage

● If you have not deployed yet:
 ○ Establish a testbed ASAP to gain experience
 ○ Identify critical path items - upstream, core, firewall
 ○ Deploy incrementally, possibly in concert with hardware/software refresh cycles
 ○ Set achievable goals - don’t get bogged doing too much

● If you’re not intending to deploy:
 ○ I’m out of advice for you... IPv6 is not going away. Please reconsider!
Thanks!

Feel free to contact me with any questions