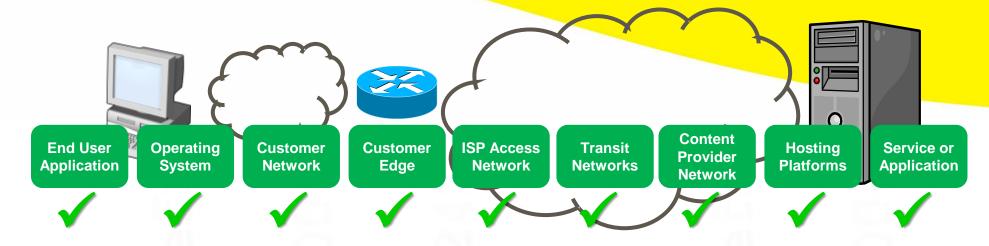
IPv6 Security Fundamentals

UK IPv6 Council January 2018


Dr David Holder CEng FIET MIEEE

🖂 david.holder@erion.co.uk

IPv6 Security Fundamentals

- Common Misconceptions about IPv6 Security
- IPv6 Threats and Vulnerabilities
- IPv6 Security Features
- The Future for IPv6 Security

Why Does IPv6 Security Matter?

- Dual stack users: 75% of traffic is over IPv6
- Over 18% of users have IPv6 connectivity
- Over 50% of top websites are IPv6 enabled
- Annual doubling of IPv6 users

RIPE Head Office

Please sir can I

ave some more?

IPv6 is 10-15% faster than IPv4

Almost 100% of nodes are IPv6 capable

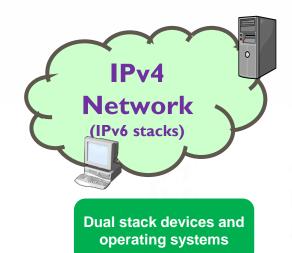
IPv6 Security Fundamentals

Common Misconceptions about IPv6 Security

- IPv6 Threats and Vulnerabilities
- IPv6 Security Features
- The Future for IPv6 Security

The Top Two Misconceptions

IPv6 is *more* secure than IPv4 ×
 IPv6 is *less* secure than IPv4 ×


• Both are **WRONG**

Assume that comparing IPv4 with IPv6 is meaningful – it isn't

More about why people think this later, but first the truth...

Erion Ltd 2018

Today's Reality: IPv6 Dual Stacks

similar vulnerabilities

td 2018

Network

IPv4/IPv6

Dual stack devices and operating systems

- Today's operating systems and devices are all dual stack
- IPv6 on by default
- Even IPv4 networks are built on IPv6 dual stacks
- Combined IPv4/IPv6 vulnerability surface

Dual Stack Implications

- Comparing IPv4 and IPv6 security is irrelevant
- Dual stack is everywhere even without deploying IPv6
- IPv6 is already in your network today
- Turning it off is the wrong thing to do
- Combined IPv4/IPv6 vulnerability surface
 - Attackers will choose weakest link
 - DoS possible due to shared resources
 - Complexity more than doubled

IPv4 Legacy Apps
/UDP)
IPv4 Stack
- C.V.

So, secure your network against IPv6 vulnerabilities now (Ideally you should have done this over decade ago)
© Erion Ltd 2018

The Third Big Misconception

3. IPv6 is IPv4 with longer addresses X

Prefix (64 bits)	Interface ID (64 bits)

- It isn't; many complex & subtle differences from IPv4
- *Even* addresses are very different:
 - New attributes: length, scope and lifetimes
 - Normal for IPv6 interfaces to have multiple addresses
 - **NEW** IPv6 addresses can change over time
- DIFFERENT Multicast is very important in IPv6
 - Large number of methods for assigning interface identifiers

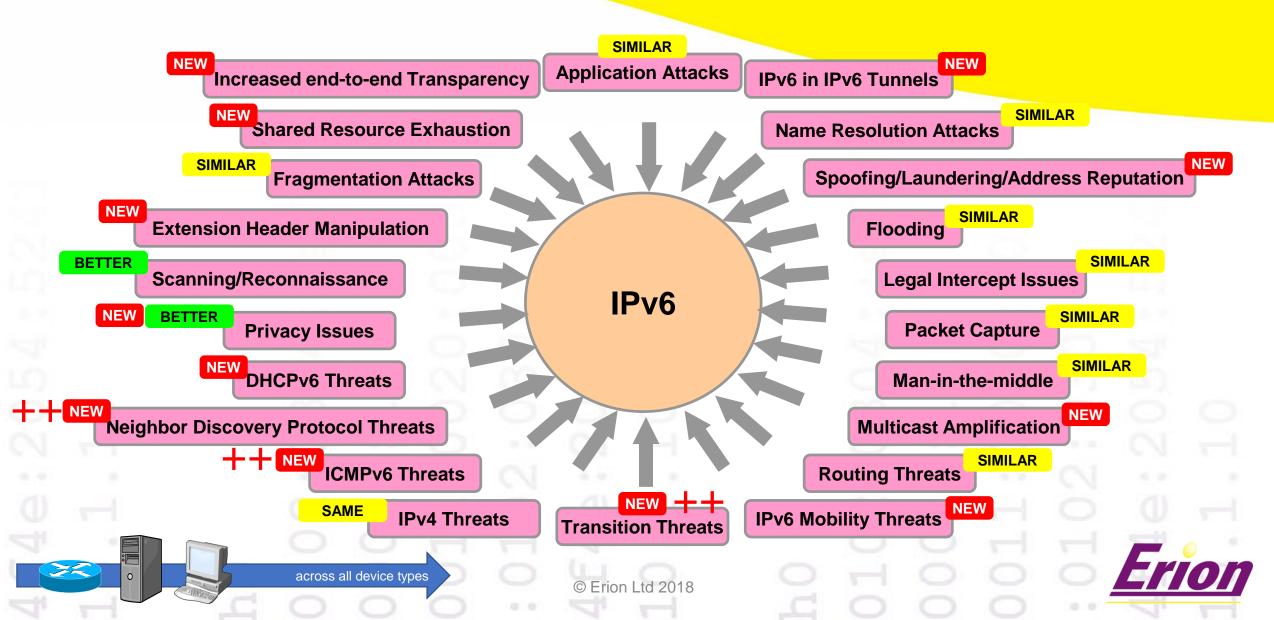
© Frion I td 2018

- DIFFERENT How addresses are used and managed is different
- DIFFERENT Global addresses are normal

IPv6 Security Fundamentals

- Common Misconceptions about IPv6 Security
- IPv6 Threats and Vulnerabilities
- IPv6 Security Features
- The Future for IPv6 Security

IPv6 Security: The Problems


Complexity

- Lots of changes and new features
- IPv6 is flexible and extendable

Shares resources

- IPv4 and IPv6 share resources
- IPv4 and IPv6 coupling
 - Transition mechanisms
 - Standards evolving over time
 - Presents a moving target
 - Staff competency in IPv6
 - Legacy IPv4 thinking

The IPv6 Vulnerability Surface

IPv6 Threats: Reality Check

IPv6 firewalls/security

Now common and on by default

Common threats

Many vulnerabilities are common to both IPv4 and IPv6

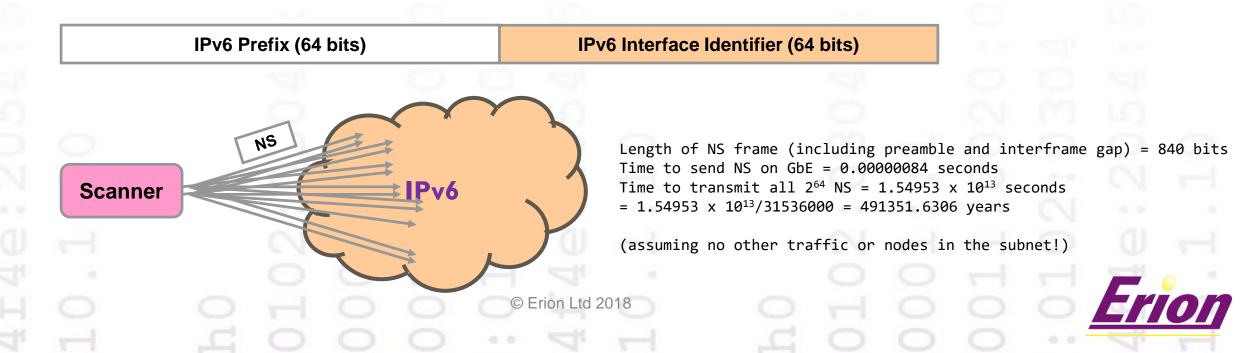
Common attack vectors

Different vulnerabilities often have common attack vectors

Many vulnerabilities are not new

We already have mitigation strategies for many threats

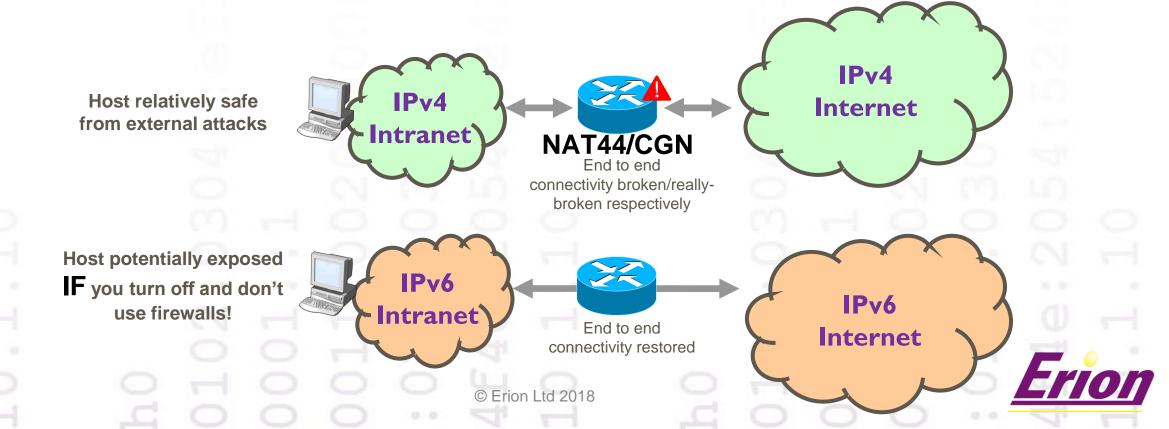
Double standards


IPv6 criticised for things that are ignored in IPv4

Scanning and Reconnaissance

BETTER

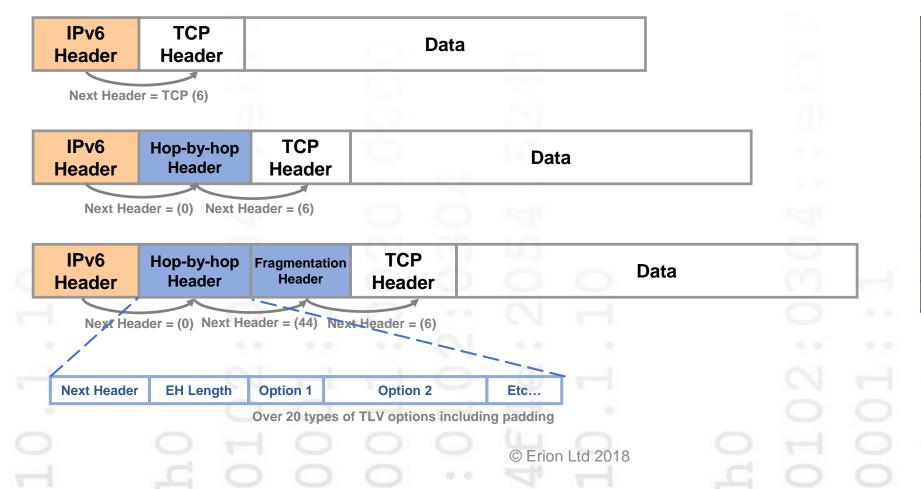
- Scanning all addresses in IPv4 is easy
- IPv4 methods impractical for IPv6
 - Number of interface addresses 2⁶⁴ = 18,446,744,073,709,551,616
 - Scan would take 491,351 years on Gigabit Ethernet (no other traffic)
 - However, other more intelligent, forms of reconnaissance are possible



End-to-End Transparency

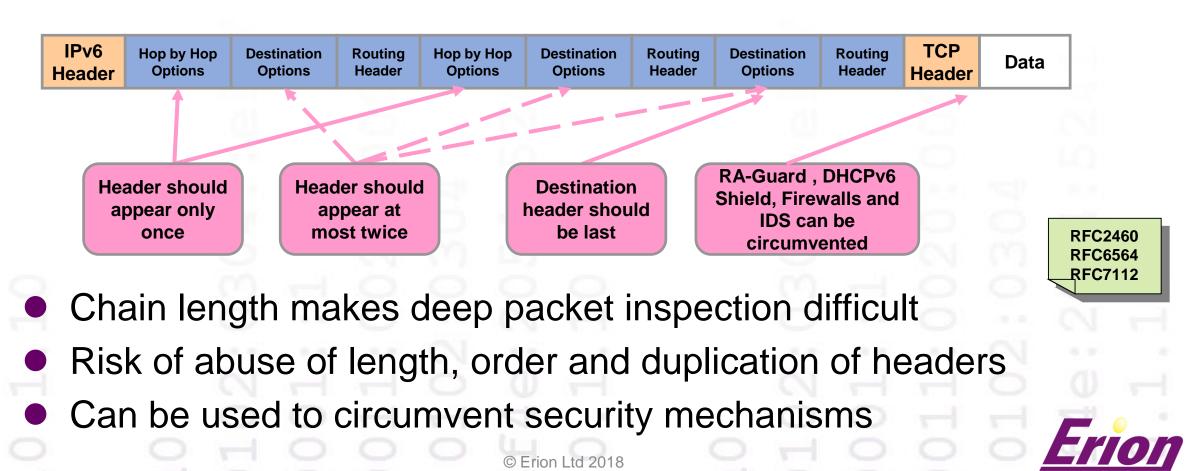
- IPv6 restores end-to-end connectivity
- Global addresses everywhere: no network address translation

NEW


• IPv6 security relies on *firewalls* instead of *broken connectivity*

IPv6 Extension Headers

NEW


- Extension Headers (EHs) carry options
 - Many are extendable with complex formats and rules

Header Type	Next Header
Hop-by-hop Options	0
Routing Header	43
Fragment Header	44
Authentication Header	51
Encapsulating Security Header	50
Destination Options	60
Mobility Header	135
No Next Header	59

IPv6 Extension Header Threats

- IPv6 places options in extension header chain
 - Originally no limit was placed on length of list

NEW

ICMPv6 Threats

NEW

■ Internet Control Message Proto Type: 135 (Neighbor solicitation Code: 0 Checksum: 0x0074 [correct] Target: fe80:::20c:29ff:feb5

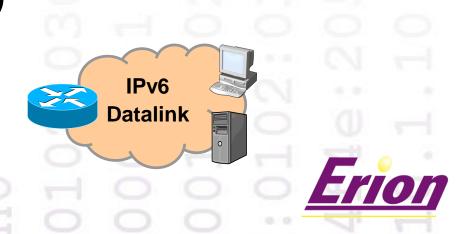
- More complex than ICMPv4
- More essential than ICMPv4
- Merges new and old features
- Requires *new* firewall policies

RFC 4890

- Some messages *must* traverse firewalls
- Cannot secure most messages with IPsec

	Туре	Message Type
	1	Destination Unreachable
ICMPv6 Error	2	Packet Too Big
Messages	3	Time Exceeded
<u> </u>	4	Parameter Problem
Ping -	128	Echo Request
l mg L	129	Echo Reply
	130	Multicast Listener Query
Multicast (MLD)	131	Multicast Listener Report
	132	Multicast Listener Done
SLAAC	133	Router Solicitation
	134	Router Advertisement
Neighbor discovery, 🤳	135	Neighbor Solicitation
DAD, etc	136	Neighbor Advertisement
	137	Redirect Message
	138	Router Renumbering
	139	ICMP Node Information Query
	140	ICMP Node Information Response
100	141	Inverse ND Solicitation
	142	Inverse ND Adv Message
Multicast (MLDv2)	143	Version 2 Multicast Listener Report
() /	144	ICMP Home Agent Address Discovery Request
	145	ICMP Home Agent Address Discovery Reply
Mobile IPv6	146	ICMP Mobile Prefix Solicitation
	147	ICMP Mobile Prefix Advertisement
	148	Certification Path Solicitation Message
<u> </u>	149	Certification Path Advertisement Message
	151	Multicast Router Advertisement
00	152	Multicast Router Solicitation
	153	Multicast Router Termination
0	154	Mobile IPv6 Fast Handovers FMIPv6
	155	RPL Control Message
4.4 4.4	156	ILNPv6 Locator Update Message
	157	Duplicate Address Request
6LowPAN	158	Duplicate Address Confirmation
ec Sec	159	MPL Control Message

Neighbor Discovery (NDP)

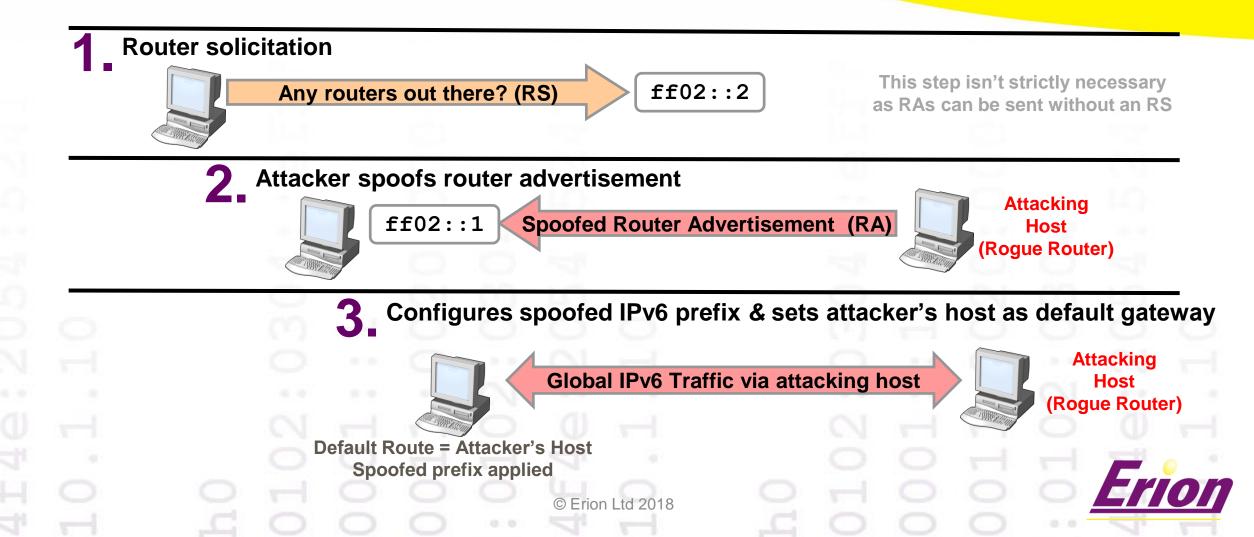

Stateless address auto-configuration (SLAAC)[№]

rion Ltd 2018

- Router discovery
- Prefix discovery
- Parameter discovery
- Next-hop determination
- Address resolution **DIFFEREN**
- Neighbor unreachability detection (NUD)
- Duplicate address detection (DAD)

Neighbor Discovery Protocol Threats

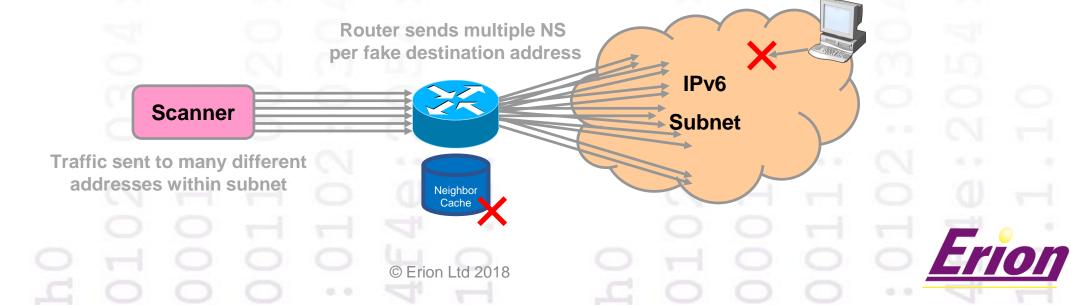
- Neighbor Cache poisoning
- Spoofing Duplicate Address Detection (DAD)
- Interfere with Neighbor Unreachability Detection (NUD)
- Rogue router
- Parameter Spoofing
- Bogus on-link prefixes
- Bogus address configuration prefixes
- Disabling routers
- Interfere with on-link determinations
- Forwarding loops
- Interfere with NDP Implementation
- Interfere with NDP router implementation from a remote site
- Replay attacks



NEW

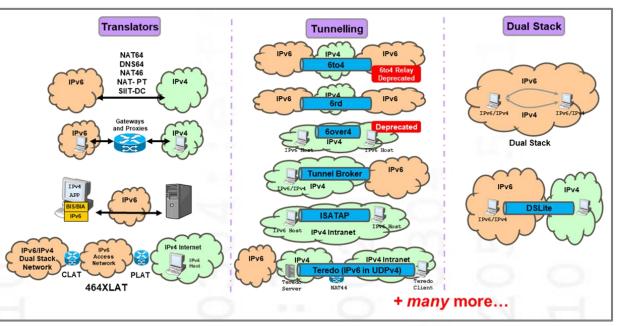
Example: Rogue Router

Attacks: denial of service (DoS) and man-in-the-middle



Example: Remote NDP Attack

RFC 6583

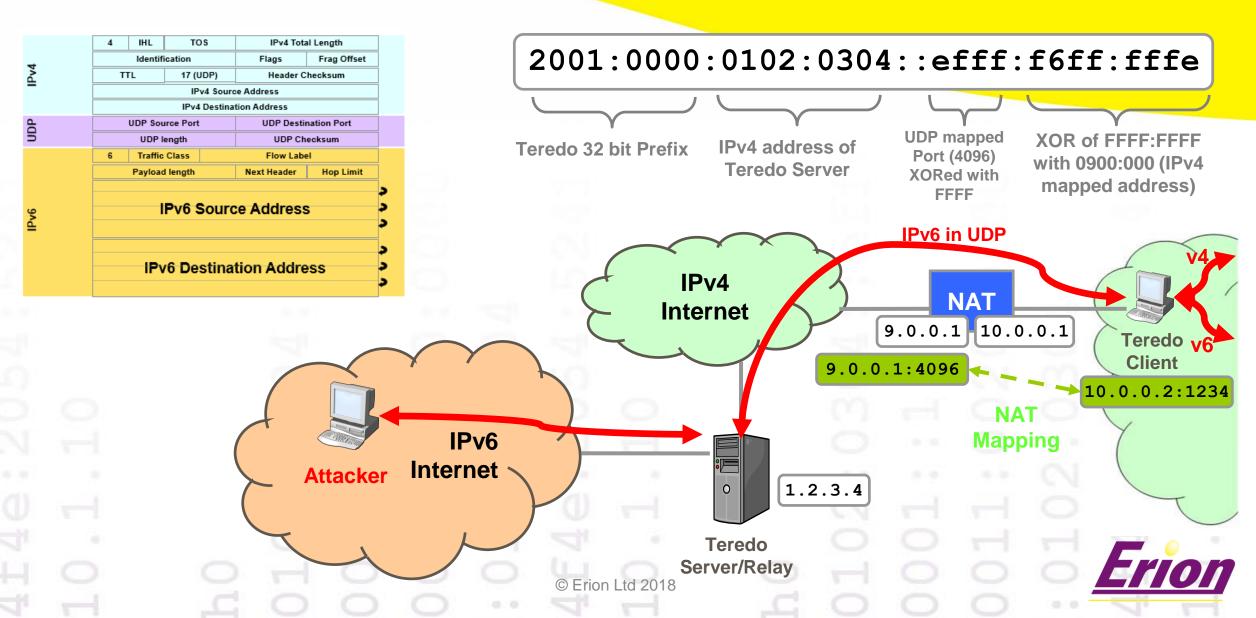

NEW

- IPv6 subnets are large
 - Interface addresses $2^{64} = 18,446,744,073,709,551,616$
- NDP may be vulnerable to DoS attack
 - ND cache may be exhausted
 - Valid ND messages may be lost or they may expire
- Attack can be instigated remotely

Transition Mechanisms Threats

- Large number of mechanisms (~30)
- Complex interactions between IPv4 and IPv6
- Standard in many stacks
- Few have built-in security
- Complex address formats
- Each has many vulnerabilities
- Some can create backdoors

All transition mechanisms are bad, some are necessary, you cannot simply ignore, you may have to use some


Erion Ltd 2018

Example 6to4 Threat

Spoofed traffic injected into IPv6 network from IPv4 internet

• IPv4 Source = Spoofed IPv4 Destination = 6to4 Relay **IPv6** Internet IPv6 Source = Spoofed IPv6 Destination = Victim IPv6 Victim 6to4 treats IPv4 internet as single subnet IHL TOS **IPv4 Total Length** Identification Flags Frag Offset TTL 41 (IPv6) Header Checksum 2002:0800:0001::1 **IPv4 Source Address IPv4 Destination Address** 6 Traffic Class Flow Label Next Header Hop Limit Payload length Attacker 6to4 Router's 6to4 IPv4 address Prefix Global IPv6 Source Address 6to4 Relay **IPv4** Internet 6to4 Anycast address is Deprecated IPv6 Destination Address Frion I td 2018

Teredo Threat Example

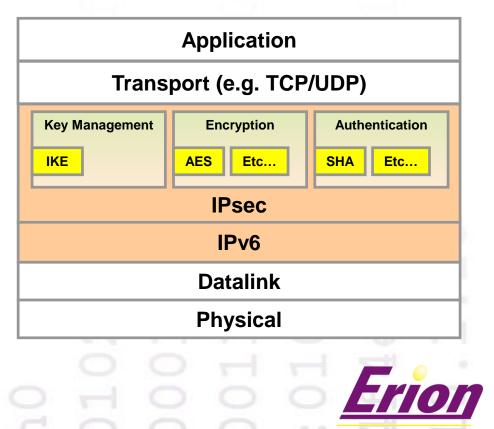
IPv6 Address Reputation

- Recording the reputation of all 2¹²⁸ addresses is impossible
- Attackers have a huge number of source addresses to use
- Even recording prefix reputation is problematic

Number of /64s	Number of /48s	Number of /32s
18,446,744,073,709,551,616	281,474,976,710,656	4,294,967,296

- It isn't quite as bad as the above. Only a part of the total address space has been reserved for public addresses. Out of this space only a part has been allocated to RIRs - never mind end users.
- Prefixes may be shared by many innocent parties
- Particularly difficult for SMTP anti-spam measures (RDNSBL)
- Bad solutions can create new problems

IPv6 Security Fundamentals

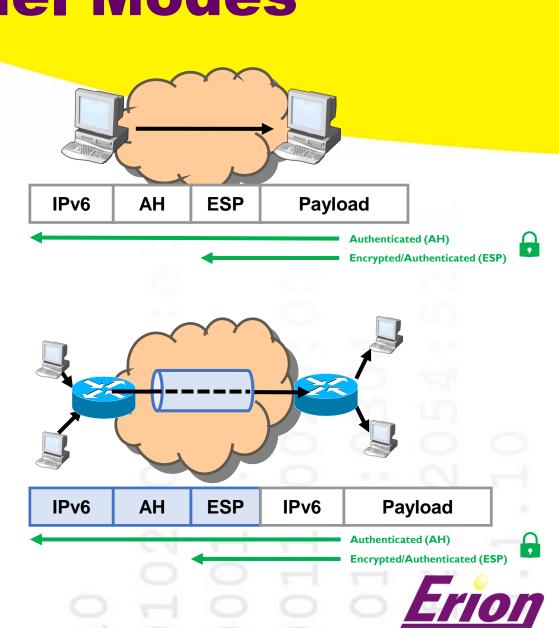

- Common Misconceptions about IPv6 Security
- IPv6 Threats and Vulnerabilities
- > IPv6 Security Features
- The Future for IPv6 Security

IPv6 Security (IPsec)

- Built into and protects the network layer
- Allows for different security mechanisms and is extendable

Frion I td 2018

- Two extension headers
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
- Interoperable
- Cryptographically based
- Was mandatory feature in IPv6 stacks
- Identical to IPv4 IPsec
- Cannot solve all security problems

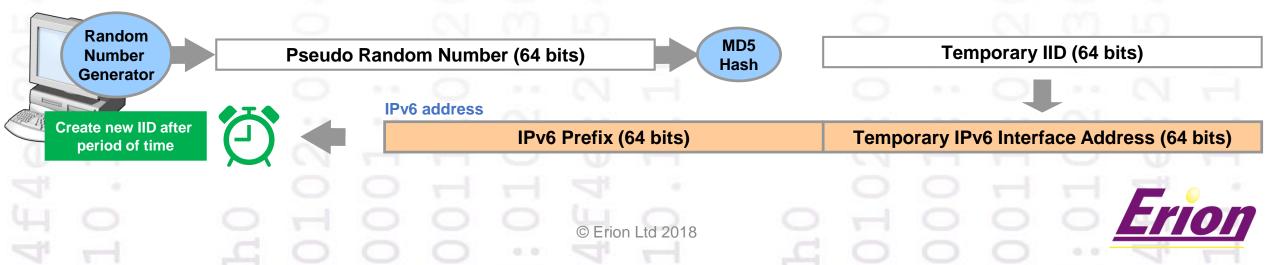

Transport and Tunnel Modes

Transport Mode

- Between two hosts
- Rarer in IPv4 due to NAT44
- More common in IPv6?

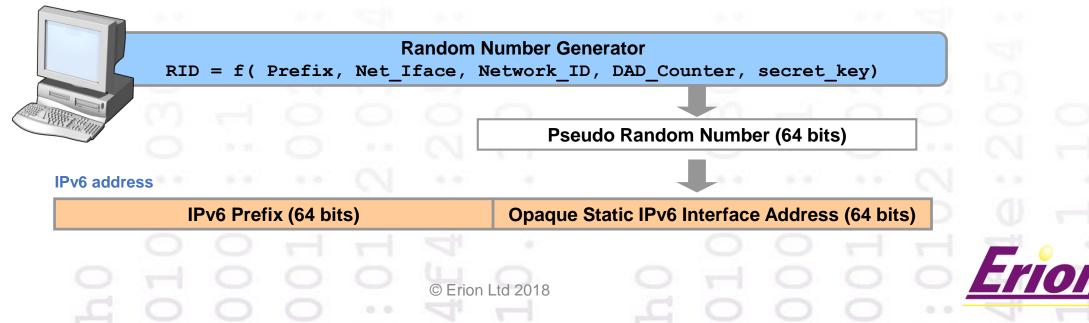
Tunnel Mode

- Security applied to tunnel
- Between hosts or gateways
- Secures whole IPv6 datagram
- Used to create VPNs
- Common in IPv4 due to NAT44



Privacy Addresses in IPv6

Alternative to modified EUI-64 Interface Identifiers (IIDs)



- Avoids exposing MAC address in IPv6 addresses
- Address is used for *client* connections
- Temporary address is refreshed after a short period of time
- Makes harvesting addresses for future attacks difficult
- Has management implications

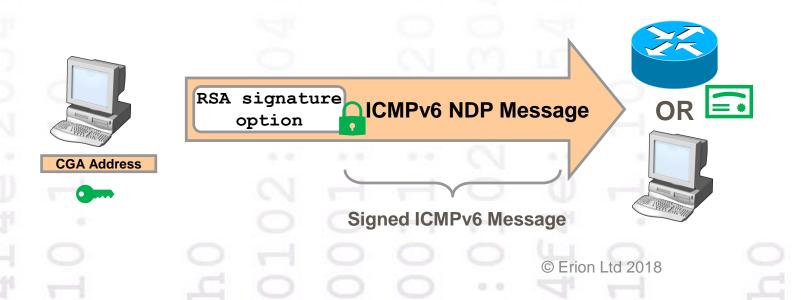
Opaque Static Addresses

- Avoids use of MAC address in IID (modified EUI-64)
- Avoids exposing MAC address in IPv6 address
- Generates a predictable IID
- IID does not change with time
- IID is different for each network and prefix

RFC 7217

Cryptographically Generated Addresses (CGA)

- Used to prove the ownership of an IPv6 address
- Binds IPv6 interface ID (IID) to a public key
- Is created from a hash of public key and other parameters
- CGA is verified by calculating the hash and comparing with IID


RFC3972 RFC4581 RFC4982

Does not require public key infrastructure (PKI)

		8		0		Hash Algorithm		8		000		
public	GA from key and				IPv6 P	refix (64 bits)			CC	GA IID (6	4 bits)	
	rameters ng prefix		5	H		4.	IPv6 addre	ss	0	H	H	
						© Erion Ltd 2018						<u>Erion</u>

Secure Neighbor Discovery (SeND)

- Secures some Neighbor Discovery (ND) messages
- Can form part of PKI or use local trust anchor
- Uses Cryptographically Generated Addresses
- Not widely available on all platforms
- Has limitations

Internet Protocol Version 6, Src: fe80::3463:5279:2977:29ba ternet Control Message Protocol v6 ype: Routen Accertisement (134) Checksum: 0x5862 [correct] Cur hop limit: 64 Flags: 0x20 Router lifetime (s): 30 Reachable time (ms): 0 Retrans timer (ms): 0 ICMPv6 Option (Prefix information : 3025::/64) ICMPv6 Option (Source link-layer address : 00:0c:29:4e:25 Type: Source link-layer address (1) Length: 1 (8 bytes) Link-layer address: Vmware_4e:25:00 (00:0c:29:4e:25:00 ICMPv6 Option (CGA) Type: CGA (11) Length: 24 (192 bytes) Pad Length: 1 Reserved CGA: d862adb99efe5b68a9a0e431563d747efe800000000 Padding ICMPv6 Option (Timestamp) Type: Timestamp (13) Length: 2 (16 bytes) Reserved Timestamp: Dec 14, 2016 12:43:05.000000000 GMT ICMPv6 Option (RSA Signature) Type: RSA Signature (12) Length: 19 (152 bytes) Reserved Key Hash: a0828691967292db133b6bb9f3873e93 Digital Signature and Padding

RFC3971

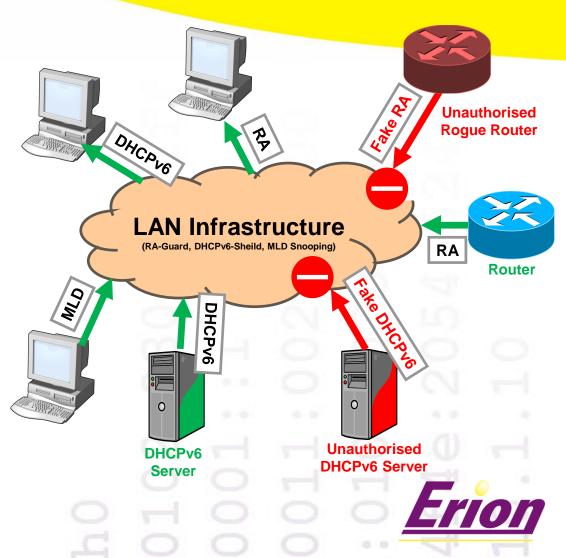
RFC6494 RFC6495

IPv6 LAN Security Features

RA-Guard

Validation and control of RAs

DHCPv6-Shield


Validation and control of DHCPv6

Neighbor Discovery Inspection

Validation of NDP messages

MLD Snooping

- Improves multicast LAN performance
- Can limit certain multicast attacks
- Usually implemented in switches
 - Can be circumvented

Attacks Against Security Features

- RA-Guard, MLD-Snooping, DHCPv6-Shield and Neighbor Discovery Protocol Inspection can be circumvented
- Extension headers make packet inspection difficult

Fragment 1 Fragment 2
IPv6 Frag EH EHs IPv6 Frag EH EHs ICMPv6 Attack

IPv6 Security Fundamentals

- Common Misconceptions about IPv6 Security
- IPv6 Threats and Vulnerabilities
- IPv6 Security Features
- The Future for IPv6 Security

The Future of IPv6 Security

IPv6-only networks

- No further need to support IPv4
- No IPv4 vulnerabilities
- No transition mechanisms vulnerabilities
- Make best use of IPv6 security features
- Reduced operational costs

IPv6-only Network IPv6-only devices and operating systems

Conclusions

- IPv4-only networks are historic
- IPv6 should already form a part of your security policy
- IPv6 security introduces many new vulnerabilities and features
- IPv6-only networks will have fewer vulnerabilities
- Legacy IPv4 thinking is a risk; staff IPv6 competency is crucial

Any Questions?

Further Information

Erion IPv6 Training IPv6 Consultancy IPv6 Blog http://www.erion.co.uk http://www.ipv6training.com http://www.ipv6consultancy.com http://www.ipv6consultancy.com/ipv6blog

IPv6 Training 19th Jan 2018 6th Feb 2018

Implementing and Securing IPv6 IPv6 Forensics NEW

Closed on-site courses available worldwide Many other IPv6 courses and IPv6 security courses available

Erion Ltd 2018

Profile: David Holder

- CEO and Chief Consultant Erion Ltd
- Author of numerous reports and whitepapers
- Chairman of IPv6 Task Force Scotland
- Regular speaker on IPv6
- Extensive experience of IPv6 spanning over 19 years