

IPv6 Host and Application Considerations

You built an IPv6 network, now what?

The Basics

- At some point you will realize the whole reason you are building a network is to support hosts
- Fundamentally you need to understand how hosts and their applications behave to make sure what you are building works
- So far, we have a very good understanding of how to do this in IPv4

 But there are some pretty big gaps in our understanding around IPv6 and dual-stack...

The Landscape

- Service Provider
- Data Center / Webscale / Cloud
- Enterprise
- SMB / Commercial
- Home
- Industrial / IOT

Foundations

- Getting an IP address
 - SLAAC verse DHCPv6 righteousness sucks
- Getting DNS resolver information
 - 6106 verse 3315 righteousness sucks more!
- Knowing your default gateway
 - And how to secure it
- Multihoming
 - With and without BGP

OS	RFC 6106	RFC 3315
Windows	No	Yes
OS X	Yes	Yes
Linux	Yes	Yes
iOS	Yes	Yes
Android	Yes	No

Poor Assumptions

- IPv4 design principals carry over to IPv6
- Hosts will behave the same as they do on an IPv4 network
- I require feature parity between IPv6 and IPv4
- I do not have to do an IPv6 address plan because I plan to dual-stack
- We will only turn up IPv6 at the edge for a transition solution
- I can test out IPv6 on my production network

Why?

- IPv6 is technically different in many ways from IPv4, you need to take those considerations into account in your design
- Hosts now have RFC 6724 influencing source and destination address selection. Remember, every host has at least a couple IPv6 addresses
- You likely are fine with functional parity. For example, logging
- IPv4 address plans are designed around constraints, start fresh, also you need to understand RFC 6555 or Happy Eyeballs
- The moment you turn up an edge service you will have to test it
- I don't know why but many engineers test in production remember,
 IPv6 is on by default and preferred! Think about it...

Key Takeaways

- 1. New paradigm in host (RFC 6724) and app (RFC 6555) behavior
- 2. For most situations it looks and feels like IPv4
- 3. Except when it doesn't!
- 4. Get training and a lab going, experience is key
- 5. Design w/ IPv6 in mind, don't assume your IPv4 knowledge is enough to get you through this
- 6. It is best to deploy IPv6 verse shutting it off. It is the same amount of effort!

Questions

- What is the documentation address space for IPv6?
- How is DHCPv6 fundamentally different than DHCP?
- What impacts will Wi-Fi have on IPv6 (think multicast)?
- In a dual-stack network, which protocol takes preference?
- What well known public cloud providers have IPv6 support today?
- Why do the weekends have the highest reported utilization of IPv6?
- What prefixes were demoted from RFC 3484 to RFC 6724? Why?
- Who were the original RFC authors for IPv6? (1883 and 2460)

Questions

- If you are running SLAAC and DHCPv6 how many addresses will you have by default?
 - link-local, SLAAC temporary, SLAAC privacy/eui-64, DHCPv6, solicited node for SLAAC/link-local, solicited node for DHCPv6, solicited node for SLAAC temporary so 7 potentially 8 if SLAAC and link-local are not the same last 24
- If you have multiple RAs how does the host know which one to use as a default gateway?
 - If the RA has a preference (H/M/L) then that determines order, otherwise, RFC 6724 will determine source/destination
- How is this more complex with multihoming and no BGP?
 - The hosts have to make the routing and source/destination address selection process decision
- Impact in Data Centers and Cloud Technology?
 - Containers and cloud scale solutions will require IPv6 to solve some of the challenges around predictive addressing and resource discovery plus scaling services

Contact info

Ed Horley

Twitter: @ehorley

Blog: howfunky.com

Task Force: cav6tf.org

