

Microsoft IT's IPv6 Killer App

IPv4 Private Address Depletion Marcus Keane - September 23 2015

This presentation and the content therein cannot be, duplicated, modified or excerpted without the express written approval of Marcus Keane(marcus.keane@microsoft.com)

Agenda

Evolution

Enabling IPv6

Challenges

Pilot Solution

Future work

IPv6 Evolution

- ISATAP tunneling for IPv6 enablement for development and research started in 2006.
- Operating Systems IPv6 capable
 - Client and Server OS's on the corporate network IPv6 capable and prefer v6 by default
- Transition Technologies
 - ISATAP deployed and then deprecated in favour of dual-stack
 - Initial IPv6 only pilot
- Native deployed in selected locations

IPv6 Evolution continued...

- World IPv6 Day June 8, 2011
- Corporate wide interest and excitement leading up to World IPv6 launch day!!
- World IPv6 Launch June 6, 2012.....YAY!

Enabling IPv6

- Routing Protocols
 - IGP
 - VPNv6
- Security infrastructure v6 aware
 - Firewalls v6 enabled
 - Other security components (AMA, APT, DLP, IDS) v6 capable
 - NetFlow v9 deployed
- Corporate on-prem datacenters IPv6 enabled
 - Includes hardware load balancers
- Internet Peering
 - IPv6 internet peering enabled
 - Enabling direct v6 internet into labs on request

Internet Routing Challenges

- Initial announcement of ARIN /32 from HQ in Seattle
- Lack of certainty about advertising space from one regional RIR in another region
- Questions about geolocation
- Considered PI /48s
- Proceeded to procure one /32 per region
- No IPv6 NAT for first implementation
 - -Therefore could only announce in one location in the region
 - -E.g. Tokyo in Asia and Dublin in EMEA

IPv6 Challenges

- Enabling dual-stack at the user edge created some scaling issues
 - ARP and ND timers much increased traffic
 - Increased control plane traffic SSDP, LLMNR
- Challenges with introducing IPv6 into MPLS
- Issues with OSPFv2/v3 taking different paths through the network.
 Mostly solved by IS-IS ©
- Extension Headers quickly fixed by vendor
- Quirks introduced by IPv6 eg DAD on WAN links
- Staff training
 - IPv6 addressing seems to be hard
 - Ensuring consistency between IPv4 and IPv6 during new deployment
 - Operational issues with IPv6

IPv6 current status

Current Stats

- 100% of WAN and Backbone is v6 enabled; IS-IS backbone (OSPFv2/v3 campus)
- 63% of managed hosts are v6 enabled
- Dual stack on 20% of corporate access network
- 6,400 internal v6 routes, 20,000 internal v4 routes
- DNS AAAA to A record comparison
- Expect to have complete network dual stack by end of year

Europe

A – 34,545 AAAA – 31,946

FarEast

A – 67,115 AAAA- 32,039 Redmond

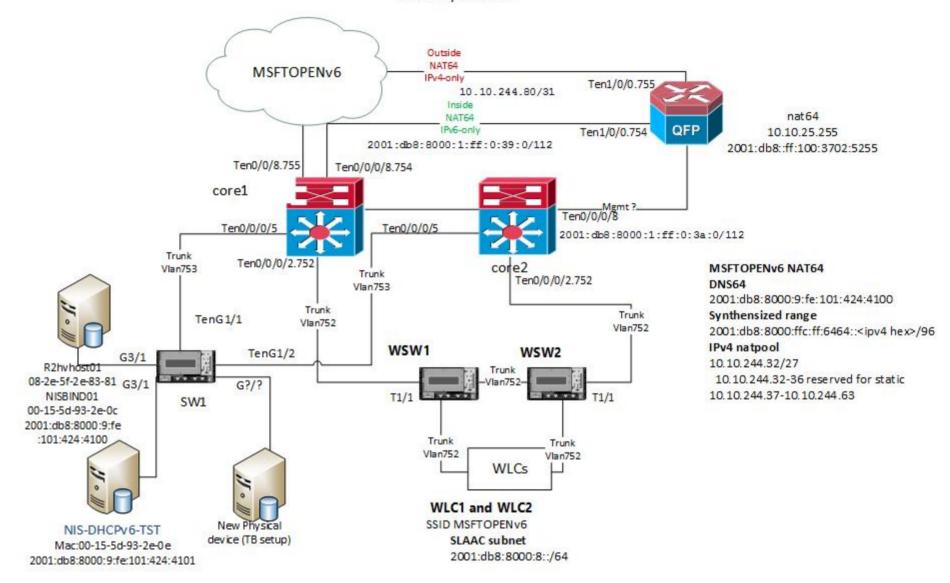
A – 410,679 AAAA - 321,113

Development

A – 147,633 AAAA – 131,402

IPv6 Killer App...

• I know you have more v4 addresses...


Vanishing RFC1918 space – Options

- Start looking at internal NAT44 OR NAT64
- We are piloting v6-only using NAT64 (with DNS64).
 - For wired we are using DNS64 via Direct Access* deployment
 - DHCPv6 stateful on existing DHCP server
 - Cisco ASR1K for NAT64
- Wireless Guest Network
 - BIND9 on Windows Server 2012
 - DHCPv6 stateless on Windows Server 2016
 - Cisco ASR1K for NAT64

^{*}Microsoft VPN solution

V6-Only Pilot Deployment

IPv6-only-wireless

IPv6-only Pilot Results – what works

- Native IPv6
 - Office 365
 - Xbox.com
 - Microsoft.com
 - Windows update (test)
 - Skype for Business
- Applications via NAT64; no noticeable performance degradation
 - SharePoint
 - Yammer
 - Bing search
 - Windows RPC/SMB
 - Windows RDP
 - Xbox VOD, video playback

IPv6-only Pilot Results— what doesn't work

Applications

- Skype
- Other applications with IPv4 embedded addresses
- X-Windows applications
- Microsoft homegrown applications

Non-client devices

- IP phones
- Conference room schedule monitor
- Security cameras

IPv6 w/NAT64 Pilot Results

- Switching between v6-only wired and dual-stack wireless
 - Had to disable Ethernet when switch to dual-stack wireless (Ethernet preferred over Wi-Fi)
 - Without Stateful DHCPv6, no "release6, renew6" had to issue PowerShell "restart-netadapter"
- Still have to figure out IPv4 embedded
 - 464xlat for mobile, what about wired
- Operations and Troubleshooting
 - Issues when one troubleshooting step is to turn off IPv6

Generally things just worked

Future Thoughts

- •DHCPv6 or SLAAC or both?
- DNS64 deployed globally
- IPv6 Multicast
- NAT64 redundancy testing
- •TE Segment Routing?
- Management

Q&A

Appendix: IPv6 address structure

```
1) Bit 33
               0=Corpnet
               1=Internet
               0=Corpnet
2) Bit 34
               1=Delegations
               Regional Blocks
3) Bits 35-40
               Puget Sound, Canada, Americas
               EMEA
               APJ
4) Bits 41-48 Site Bits
               Site =
                       Hub location ROW
                       PS core aggregation pair
               First /48 reserved for infastructure
```

- 5) Bits 49-64 User Subnets
- 6) Bits 65-128 Host identifiers

Appendix: Acronyms

AMA - Advanced Malware Analysis

DLP - Data Loss Prevention

IDS - Intrusion Detection System

APT - Advanced Persistent Threats

Disclaimer

 This presentation and the content therein cannot be, duplicated, modified or excerpted without the express written approval of Marcus Keane marcus.keane@microsoft.com