Recent IPv6 Security Standardization Efforts

Fernando Gont

UK IPv6 Council Security Workshop London, UK. July 12, 2017

Part I: Protocol Issues

IPv6 Addressing

Security & Privacy Analysis

- **RFC 7721:** "Security and Privacy Considerations for IPv6 Address Generation Mechanisms"
- RFC 7707: "Network Reconnaissance in IPv6 Networks"

Mitigation of Security & Privacy Issues

- **RFC 7217:** "A Method for Generating Semantically Opaque Interface Identifiers with IPv6 Stateless Address Autoconfiguration (SLAAC)"
- **RFC 8064:** "Recommendation on Stable IPv6 Interface Identifiers"

RFC7217: stable-privacy addresses

• Generate Interface IDs as:

F(Prefix, Net_Iface, Network_ID, DAD_Count, Secret_Key)

- Where:
 - F(): PRF (e.g., a hash function)
 - Prefix: SLAAC or link-local prefix
 - Net_Iface: some interface identifier
 - Network_ID: e.g. the SSID of a wireless network
 - DAD_Count: initialized to 0, and incremented by 1 upon collisions
 - Secret_Key: unknown to the attacker (and randomly generated by default)

RFC7217: stable-privacy addresses (II)

- As a host moves:
 - Prefix and Network_ID change from one network to another
 - But they remain constant within each network
 - F() varies across networks, but remains constant within each network
- This results in addresses that:
 - Are stable within the same subnet
 - Have different Interface-IDs when moving across networks
 - For the most part, they have "the best of both worlds"

RFC7217: implementation status

- Known implementations:
 - Linux kernel v4.0
 - NetworkManager v1.2.0-0.3.20151112gitec4d653.fc24
 - dhcpcd 6.4.0
- OSes known to already ship with RFC7217:
 - Mac OS Sierra
 - Fedora

RFC7217 in Fedora (I)

Node connects to Network #1

[root@localhost fgont]# ifconfig enp0s3 enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet6 fc00:1::e17:cbfb:392d:a9dc prefixlen 64 scopeid 0x0<global> inet6 fe80::267c:28dc:2598:78ff prefixlen 64 scopeid 0x20<link> ether 08:00:27:c2:e3:95 txqueuelen 1000 (Ethernet) RX packets 50893 bytes 45348708 (43.2 MiB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 20968 bytes 1283359 (1.2 MiB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

[root@localhost fgont]# 📒

RFC7217 in Fedora (II)

Node connects to Network #2

[root@localhost fgont]# ifconfig enp0s3 enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet6 fc00:2::48a0:c116:8a8:ec56 prefixlen 64 scopeid 0x0<global> inet6 fe80::267c:28dc:2598:78ff prefixlen 64 scopeid 0x20<link> ether 08:00:27:c2:e3:95 txqueuelen 1000 (Ethernet) RX packets 50894 bytes 45348818 (43.2 MiB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 20994 bytes 1287393 (1.2 MiB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 [root@localhost fgont]#

RFC7217 in Fedora (III)

Node connects (back again) to Network #1

[root@localhost fgont]# ifconfig enp0s3 enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet6 fc00:1::e17:cbfb:392d:a9dc prefixlen 64 scopeid 0x0<global> inet6 fe80::267c:28dc:2598:78ff prefixlen 64 scopeid 0x20<link> ether 08:00:27:c2:e3:95 txqueuelen 1000 (Ethernet) RX packets 50893 bytes 45348708 (43.2 MiB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 20968 bytes 1283359 (1.2 MiB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 [root@localhost fgont]#

London, UK. July 12, 2017

IPv6 Extension Headers

IPv6 Fragmentation

- Conceptually, same as in IPv4
- Implemented with an IPv6 Fragmentation Header

IPv6 Fragmentation Overview

- IPv6 fragmentation performed only by hosts (never by routers)
- Fragmentation support implemented in "Fragmentation Header"

8 bits	8 bits	13 bits	2b 1b
Next Header	Reserved	Fragment Offset	Res M
Identification			

- Where:
 - Fragment Offset: Position of this fragment with respect to the start of the fragmentable part
 - M: "More Fragments", as in IPv4
 - "Identification": Identifies the packet (with Src IP and Dst IP)

Atomic fragments

- Atomic fragments: a complete packet that includes a fragment header (FO: 0, MF: 0)
- (Used to be) generated upon receipt of MTU<1280

Atomic fragment

UK IPv6 Council Security Workshop London, UK. July 12, 2017

Mitigating miscellaneous issues

- **RFC 6980**: Security Implications of IPv6 Fragmentation with IPv6 Neighbor Discovery
- **RFC 7739**: Security Implications of Predictable Fragment Identification Values
- **RFC 7112**: Implications of Oversized IPv6 Header Chains
- draft-ietf-6man-rfc2460bis: Internet Protocol, Version 6 (IPv6) Specification

Mitigating issues with atomic fragments

- **RFC 8021**: Generation of IPv6 Atomic Fragments Considered Harmful
- **RFC 6946**: *Processing of IPv6 "Atomic" Fragments*
- **RFC 7915**: *IP/ICMP Translation Algorithm*
- draft-ietf-6man-rfc2460bis: Internet Protocol, Version 6 (IPv6) Specification

IPv6 Standardizaton Efforts Part II: Operational Issues

UK IPv6 Council Security Workshop London, UK. July 12, 2017

© 2017 SI6 Networks. All rights reserved

Operational Security Considerations

 draft-ietf-opsec-v6: Operational Security Considerations for IPv6 Networks

First-Hop Security

- **RFC 7113**: Implementation Advice for IPv6 Router Advertisement Guard (RA-Guard)
- RFC 7610: DHCPv6-Shield: Protecting against Rogue DHCPv6
 Servers
- **RFC 6959**: Source Address Validation Improvement (SAVI) Threat Scope

IPv6/IPv4 Interaction

- **RFC 7123**: Security Implications of IPv6 on IPv4 Networks
- **RFC 7359**: Layer 3 Virtual Private Network (VPN) Tunnel Traffic Leakages in Dual-Stack Hosts/Networks

Some conclusions

Some conclusions

- Increased interest and operational experience with IPv6 led to many improvements
- A lot has been done in the last 5 years or so!

Questions?

UK IPv6 Council Security Workshop London, UK. July 12, 2017

Thank you's

- Veronika McKillop
- Tim Chown
- Andy Butcher
- UK IPv6 Council
- Axians

Thanks!

Fernando Gont

fgont@si6networks.com

IPv6 Hackers mailing-list

https://www.si6networks.com/community/

www.si6networks.com

UK IPv6 Council Security Workshop London, UK. July 12, 2017

© 2017 SI6 Networks. All rights reserved