

IPv6 first hop security in ov cloud environment

David Freedman – Claranet – IPv6 Security Workshop – July 2017

Some background - 2011

- In 2011 we did launched a cloud computing product.
 - We called it VDC (Virtual Datacentre).
- At the time, customers traditionally hosted services on their own hardware.
 - Either on their own premises or in our Datacentres.
- Customer hardware usually enterprise names / brands.
 - We had to build trust in a nascent market.
 - This meant anything we built had to be based on the same names / brands.
- However, the flesh was willing, but the spirit was weak
 - No decent orchestration or management software, portals etc..
 - Big vendors full of ideas, but no solutions to the problems.
 - Eventually, we found a supplier to work with for this software.
 - But we largely had to develop the networking ourselves.

IPv4 model, SIAs and DIAs

- VM configuration and provisioning workflow:
 - Pick an flavour of VM / Configuration.
 - Add some networking to it, in the form of a vNIC.
 - Three flavours of vNIC available:
 - Public (which we internally call SIA)
 - External (which we internally call DIA)
 - Private
 - Public vNICs share a broadcast domain.
 - External and Private vNICs have a dedicated routing domain.
 - Private is completely private to the customer living entirely inside the virtualisation domain.
 - DIA exists on the physical network and can be joined to other things and services.
 - SIA has a shared routing domain.
 - Machines encouraged to request address via long lived DHCP
 - Only mandatory in SIA.
 - Custom DHCP server serves state from provisioning DB, does not use leases.

What is SIA?

- SIA enables you to obtain an address quickly.
 - Pick from a pool, your VM can have a public address directly attached.
 - No NAT (unless your VM is a NAT box of course).
- SIA is a shared routing domain.
 - It is also a shared broadcast domain (in theory).
 - We don't segment customers any more than we would filter them from eachother.
 - We do however have an FHS security model.
 - Flows which do not meet the security criteria are dropped.

SIA IPv4 FHS Security Model

(non-exhaustive)

- Only permit IPv4 and ARP EtherTypes.
- Only permit source MACs you own.
- Only permit destination MACs in-domain.
- Only authorised DHCP servers on the LAN.
- Only permit ARP replies for your DHCP address.
- Only permit IP source address you are assigned.

SIA IPv4 FHS Security Model

(non-exhaustive)

- Only permit IPv4 and ARP EtherTypes.
- Only permit source MACs you own.
 Dynamic MAC filtering
- Only permit destination MACs in-domain.
- Only authorised DHCP servers on the LAN.
- Only permit ARP replies for your DHCP address.
- Only permit IP source address you are assigned.

Vendor Feature : IP Source Guard

Vendor Feature : Authorized ARP

SIA IPv6 Implementation

- Same concept required shared broadcast domain.
- IPv6 SIA a /64 with stateful DHCPv6 service + delegation.
- Threat model is therefore:
 - Attacks on neighbor discovery (control plane)
 - Unauthorised neighborships / poisoning.
 - ND cache exhaustion..
 - Attacks on router advertisement (control plane)
 - Unauthorised router advertisements.
 - Spoofing (forwarding plane).
 - Unauthorised source addresses and prefixes.

Start with DHCPv6

- Host steered toward DHCPv6 service via RA managed config.
 - DHCPv6 has does appear on-link (though, really not conceived pre-RFC6939)
 - Set M flag, clear A flag (important).
 - DHCPv6 "lease" reflects their provisioned address.
 - Delegation made if the host is to be a router.
- Record of address and delegation added to bindings DB.
 - Vendor calls this 'Glean'
 - Glean can be applied to RA/ND (stateless) and/or RA/DHCPv6 (stateful)
 - Configured in stateful mode.
- Prevent any rogue DHCPv6 servers.
 - Vendor calls this 'DHCPv6 Guard'
 - Just like IPv4 counterpart, blocks unauthorised DHCPv6 replies.
 - Susceptible to evasion scenarios (need additional mitigation).

Neighbor Discovery / RA

- Bindings are used to validate further ND
 - Vendor calls this "ND Inspection"
 - Invalid ND packets are dropped before doing anything else.
 - NA assertions validated against bindings DB
 - Validates neighbor address, bound MAC and source MAC.
 - This mitigates against NA spoofing and poisoning.
- Router Advertisements also validated
 - Industry & Vendor call this "RA Guard" (RFC6105)
 - Block router advertisements from unauthorised sources.
 - Attempt to mitigate evasion scenarios listed in RFC7113.
- ND rate limited
 - Vendor calls these "ND Cache Interface Limit" & "ND Resolution Rate Limit "
 - Queued requests and interface cache size limited.

Source and Destination Validated

• IPv6 Global sources validated against bindings DB

- Vendor calls this both"IPv6 Source Guard" and "IPv6 Prefix Guard"
- Link local allowed, but global auto-configured address not.
- This mitigates against global source spoofing.
- uRPF also enabled upstream for protection.

• IPv6 Global destinations validated against bindings DB

- Vendor calls this "IPv6 Destination Guard"
- This mitigates against destination spraying / cache exhaustion.

Problems

- Bugs Lots of bugs
 - Features not working.
 - Memory leaks.
 - Overzealous defaults.

Keeping state

- ND Bindings needs to be backed up.
- If you have multiple units, you have to be 'creative'

Emergencies

- Loss of bindings or corruptions of state, again, you have to be 'creative'
- Amnesty scripts.

Was it all worth it?

- Mostly vendor features, but some already standardised.
 - Most of them didn't appear in mature code until recently.
- Alternative was to forward traffic via hypervisor.
 - Potentially not having shared broadcast domain.
 - However, needs of home-grown code, supporting forwarding security.
- Another alternative, don't offer SIA
 - Public cloud providers are using similar model, why would we opt out?
 - Customers require this level of flexibility.

Any questions?

