IPV4 AS A SERVICE

Deployment models and their consequences

- Founded in 2017 by Lee Howard
- Business focus:
 - IPv4 as a Service
 - MAP-E, MAP-T and Lw4o6
 - NAT64
 - DS-Lite
 - IXP and on-premise deployments
 - IPv6 consulting

CHOOSING A TECHNOLOGY

Different choices for different use-cases

- Well-known technology
- Adapts to user activity
- Works with 464xlat
- Single solution for mobile + residential
- Simple provisioning

- Stateful
- Difficult to scale *
- Single point of failure *
- Less traceable
- Requires lot of logging

- Well-known technology
- Adapts to user activity
- Lot of CPE support
- Simple provisioning

- Stateful
- Difficult to scale
- Single point of failure
- Less traceable
- Requires lot of logging

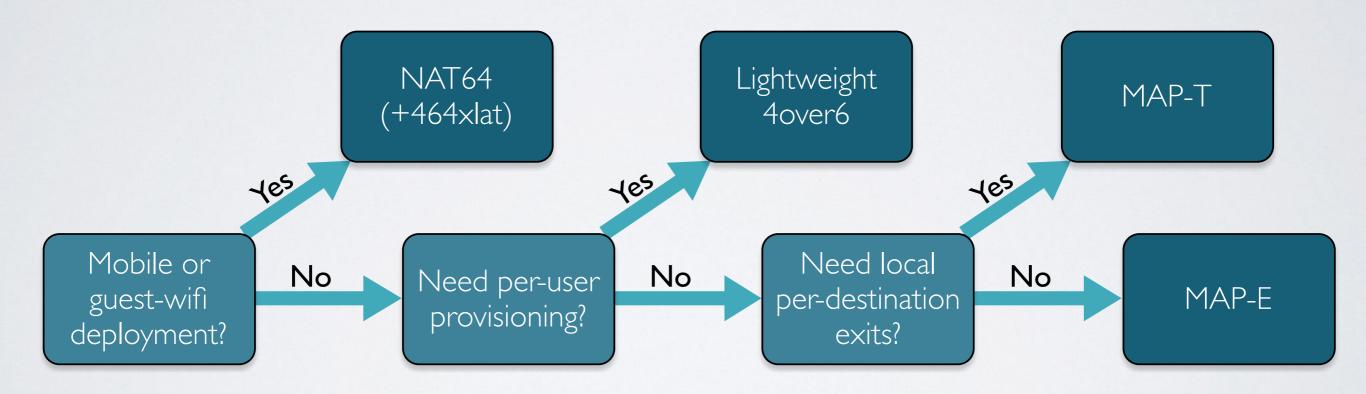
- Stateless
- Scales horizontally
- No single point of failure
- Reversible algorithm
- Simple provisioning
- No logging required
- Clean packet format

- Not adaptable per user
- Lack of CPE support

- Stateless
- Scales horizontally
- No single point of failure
- Reversible algorithm
- Simple provisioning
- No logging required
- Per-destination exits

- Not adaptable per user
- Lack of CPE support
- Packet mangling and reconstruction

Lightweight 4over6


Advantages:

- Semi-stateless
- Adaptable per user
- Scales horizontally
- No single point of failure
- Reversible algorithm
- Clean packet format

- Semi-stateless
- Per-user provisioning
- Logging of per-user provisioning required
- Lack of CPE support

Decision tree

Decision tree - summary

- I would recommend MAP-E or MAP-T
- Lw4o6 provides per-user provisioning
 - · But that brings a lot of complexity with it
- NAT64 is well-supported on mobile devices
 - But it requires stateful NAT equipment

For data centres

· SIIT-DC

- Run the whole data centre on IPv6
- Expose the IPv6 service on IPv4
- Stateless, scales horizontally, no single point of failure, reversible algorithm, simple provisioning, no logging required, etc.
- Basically an inverse I-to-I MAP-T mapping

IPV4-AS-A-SERVICE OR ON-PREMISE

Responsibilities and scalability

IPv4-as-a-Service

No need for IPv4 at all

- Transit and peering managed by Retevia
- DDOS protection is provided as part of the service

Managed infrastructure

- Translation, DHCPv6 and DNS are provided
- Retevia provides admin panels
- Great for enterprises and smaller ISPs

Example deployment

Router

Router

Switch

Switch

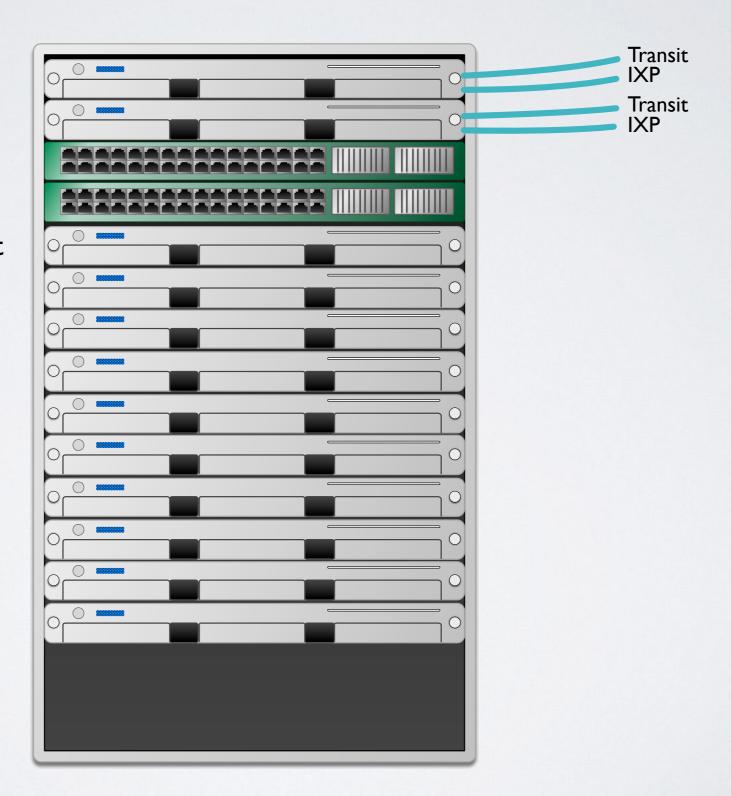
Management

Logging

Translator

Translator

Translator


Translator

Translator

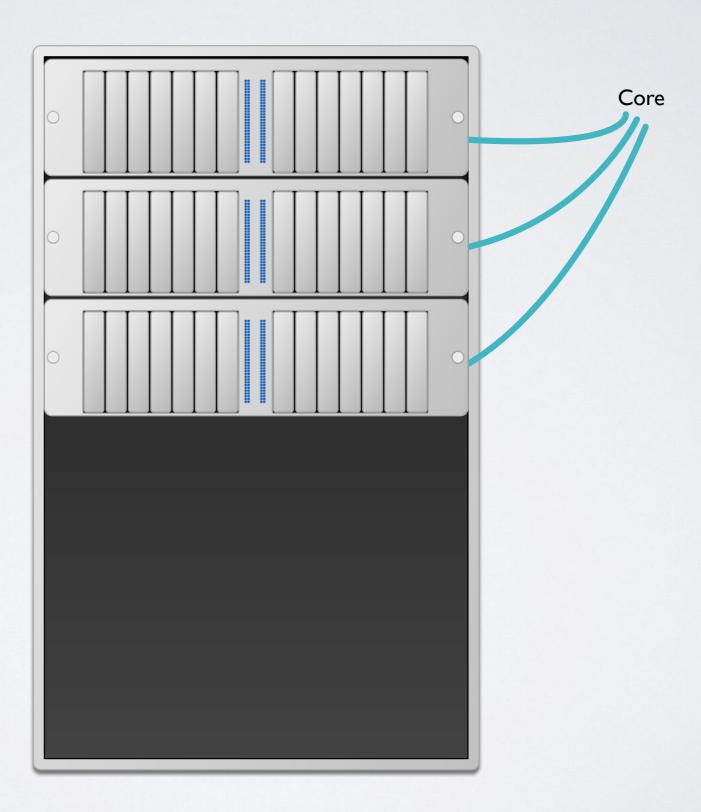
Translator

Translator

Etc...

On-premise deployment

- Manage your own IPv4
 - Keep using your existing transit, peering and DDOS protection
- Part of your own infrastructure
 - Integration with your existing DHCPv6 and DNS
 - Retevia provides admin panels
- Great for larger enterprises and ISPs



Retevia Example deployment

Translator

Translator

Etc...

SCALABILITY

Does it go up to 11?

NAT64 and DS-Lite

The stateful protocols

Hard to scale

- Distribute customer groups over separate instances
- Little scalability within one instance
- A customer's traffic must pass through the box with that customer's session state

Redundancy

NAT64 redundancy still possible up to ±8 Gbps

MAP-E, MAP-T and Lw4o6

- The stateless protocols
- Scales really really well
 - Tested up to 185 Gbps at 83 Mpps
 - Expect upcoming hardware to scale to ±400 Gbps
 - · CPU handles this just fine, PCle busses are bottleneck

Redundancy

- No per-session state, add redundant boxes as needed
- Lw4o6 has per-user state, so need to sync the config

LEGAL IMPLICATIONS

What can/must/may you track?

Data retention

Investigatory Powers Act 2016

In this Part "relevant communications data" means communications data which may be used to identify, or assist in identifying, any of the following—

- (a) the <u>sender</u> or <u>recipient</u> of a communication (whether or not a person),
- (b) the time or duration of a communication,
- (c) the type, method or pattern, or fact, of communication,
- (d) ...

and this expression therefore includes, in particular, internet connection records.

Data retention

Investigatory Powers Act 2016

A retention notice <u>must not require</u> an operator who controls or provides a telecommunication system ('the system operator') to retain data which—

. . .

- (c) is not needed by the system operator for the <u>functioning of the</u> <u>system</u> in relation to that communication, and
- (d) is not retained or used by the system operator for any other lawful purpose,

and which it is reasonably practicable to separate from other data which is subject to the notice.

Now combine the two...

Before CGN/NAT64/DS-Lite

• ISP communication systems didn't track source, destination, time, type or method beyond "customer X gets IP address Y"

With CGN/NAT64/DS-Lite

- The translators need to track session information to perform their normal function
- Which allows the retention notice to require the ISP to retain it

How to translate?

- Different ways to do NAT
 - Based on classic 5-tuple + private side
 - Protocol
 - Source address & port
 - Destination address & port
 - Based on client-side 3-tuple + private side
 - Protocol
 - Source address & port

How to translate?

Different ways to do NAT

- Based on 5-tuple + private side
 - More efficient use of port numbers
 - · May reuse source address & port for different destinations
 - Precludes use of original STUN protocol
- Based on client-side 3-tuple + private side
 - · Reserve one or more source ports for a user
 - · Use those ports for reaching any destination

Retevia A+P based protocols

- Client-side 3-tuple built into protocol
 - · Reserves a set of source ports for a user, based on the MAP algorithm (or Lw4o6 provisioning)
 - The NAT process in the user's CPE uses those ports for reaching any destination

NAT tables, classic 5-tuple

Protocol	Client A+P	Public A+P	Dest A+P
TCP	10.0.0.1 :5678	185.54.92.1:7890	31.13.91.36:80
TCP	10.0.0.2:5413	185.54.92.1:7890	31.13.91.36:443
TCP	10.0.0.3:8145	185.54.92.1:7890	31.13.91.37:80
TCP	10.0.0.4:51821	185.54.92.1:7890	31.13.91.37:443
TCP	10.0.0.5:8312	185.54.92.1:7890	31.13.91.38:80
TCP	10.0.0.6:13578	185.54.92.1:7890	31.13.91.38:443
TCP	10.0.0.7 :62038	185.54.92.1:7890	31.13.91.39:80
TCP	10.0.0.8:12345	185.54.92.1:7890	31.13.91.39:443
TCP	10.0.0.9:9141	185.54.92.1:7890	31.13.91.40:80
TCP	10.0.0.10:5421	185.54.92.1:7890	31.13.91.40:443

Bold = Log

NAT tables, client 3-tuple

Protocol	Client A+P	Public A+P	Dest A+P
TCP	10.0.0.1:5678	185.54.92.1:7890	Don't care
TCP	10.0.0.2:5413	185.54.92.1:7891	Don't care
TCP	10.0.0.3:8145	185.54.92.1:7892	Don't care
TCP	10.0.0.4:51821	185.54.92.1:7893	Don't care
TCP	10.0.0.5:8312	185.54.92.1:7894	Don't care
TCP	10.0.0.6:13578	185.54.92.1:7895	Don't care
TCP	10.0.0.7 :62038	185.54.92.1:7896	Don't care
TCP	10.0.0.8:12345	185.54.92.1:7897	Don't care
TCP	10.0.0.9:9141	185.54.92.1:7898	Don't care
TCP	10.0.0.10:5421	185.54.92.1:7899	Don't care

Bold = Log

Impact on tracking

Full 5-tuple

- Every single (TCP, UDP etc) session must be logged
 - · Reveals exactly who communicated with which service
 - Also reveals when and how long
- Massive amount of logging data

Impact on tracking

Client-side 3-tuple

- · Only the ports available to each user are known
 - NAT64 and DS-Lite might reveal when a user is active
 - Doesn't reveal sensitive user behavior
- Low (or no) need for logging

5-tuple based logging

- Expensive
- Reveals user's detailed on-line activities
- Allows for potential re-use of port numbers

· 3-tuple based logging

- Cheap
- Protects user's privacy
- A little less efficient with port numbers

Q&ADiscussion!