

UK IPv6 Council: 464xlat for mobile operators 25th September 2018

Major reason - Avoiding IPv4 private address exhaustion

- Increase in users of data, leading to increasing numbers of addressing, driven by:
 - > Customers demand (always connected)
 - > Customers devices (LTE, always IP)
 - > Number of addresses per customers (incl. VoLTE/IMS, tethering additional devices)
- Long term strategy, including IoT driving addressing demands

Other benefits - Advantage of global addressing of IPv6

- Avoiding IPv4 Public address exhaustion
- Cost avoidance for national regulatory obligations
- Long term strategy including 5G-Convergence

464xlat (rfc6877):

- Translation based (i.e. NAT, CGN, already extensive in mobile)
- Avoids IPv4 Exhaustion; Eligible devices effectively IPv6-only as operator runs IPv6-only access/core network

464xlat (rfc6877) makes use of:

- stateful NAT64 (rfc6146), stateless client ("CLAT", as per rfc6145)
- NAT64 prefix discovery, (currently rfc7050 which uses DNS64)
- DNS64 (rfc6147) can be scoped for discovery or as part of a wider NAT64/DNS64 regime.

Traffic of ~100Millions of mobile customers:

- T-Mobile (US)
- Sprint(US)
- Reliance Jio (IN)
- Orange (PL)
- SK-Telecom(SK)
- Telstra(AU)
- Rogers(CA)
- EE(UK).

EE MOBILE USECASES

4

Technology Selection

464xlat has been the deployment choice of cellular operators, for whom 20 Million private IPv4 are not sufficient

	Cellular Requirements		How they fit to 464xlat
1. Be clear on Goals	 Many cellular operators goals: Avoid private IPv4 exhaustion Target is zero calls into customer services Must be supported on handset OS 	5. Start tests/trials	IPv6-only on handsets. Dualstack won't do
2. Know your usecases	 Mobile usecases, handsets + tethering: Suited to NAT (encapsulation breaks 3GPP PCC architecture) Unrestricted end devices, and services they access 		NAT Translation + solution for literals
3. Exception handling	 Strategy to include: Devices without 464xlat support Business Customers, customers who don't want IPv6, roaming 		A Single APN supporting IPv4 OR IPv6
4. Business Case	 For cellular operator using NAT: Move to IPv6 + NAT64 Save on 65% of NAT load 		A single CGN running NAT44 & NAT64
		Future:	

- MAP-T? Missing support in mobile handset OS
- IETF looking at alternatives for prefix discovery.

HOW 464XLAT FIXES IPV4-BOUND APPS IPV6-ONLY WITH 464XLAT (RFC6877)

6

Apple and Android

Both Android and Apple (from iOS12) make use of 464xlat, implementations are different.

Apple

TETHERING (via single APN)

- iOS12 invokes 464xlat for tethering ON-BOARD APPs
- App-store ecosystem immunised against IPv4 literals:
 - Police the Apps to ensure no literals
 - Fix other literals/Server-side:

Happy Eyeballs v2 (RFC8305)

A bump-in-the-host approach; let the OS help repair literals; clients can perform synthesis of NAT64 destinations (RFC6050) themselves (after the NAT64 prefix is discovered e.g. RFC7050)

Android

TETHERING (via single APN)

 Tethering interface mapped via 464xlat (CLAT)

ON-BOARD APPs

 Android uses 464xlat for any apps or server-calls bound to a IPv4-stack

Related Limitations

Obvious

• 464xlat uses NAT, which can hinder certain protocols/services e.g. gaming.

Less obvious

- DNS64 hinders DNSSEC
- DNS64 can hinder content that mixes URL and literal access (where source address expected to be same)

DNS64 Deployment choices – See diagram: 1. for prefix only, relying fully on 464xlat, or 2. full scope.

DNS64 is a hack, so why not remove it? Less bad customer experience than a device with no 464xlat.

In all cases enabling IPv6 on content avoids DNS64/NAT64 issues.

Thank you Any questions?

Nick Heatley, BT Network Architect Chief Architect's Office

