

Considerations for IPv6 Address Planning

Veronika McKillop

Enterprise & IPv6 Workshop

UK IPv6 Council

24th April 2024

Agenda

- Gathering Requirements for IPv6 Assignment
- Obtaining IPv6 Prefix
- Creating IPv6 Addressing Plan
- Closing Remarks IPAM; ULA or not; IPv6 host Address Assignment

Gathering Requirements for IPv6 Assignment

Requirement Gathering – 1.

- Number of locations and the level of hierarchy
 - Within a region, country, continent, global presence?
 - NOT important: # hosts within a subnet ($/64 = 2^{64}$)
 - Will you need allocations from multiple RIRs?
- Number of different network segments
 - What is the maximum within a level of hierarchy?
 - Corporate, development, remote-access VPN, guest Wifi, Network services & Management
 - Different types of IoT, extranet services for partners and suppliers
 - Per Business unit?
- Services centralized (one DC) or distributed (in branches/multiple DCs/Cloud)
 - DC Components that require IP (not an exhaustive list) not a problem for IPv6:

Requirement Gathering – 2.

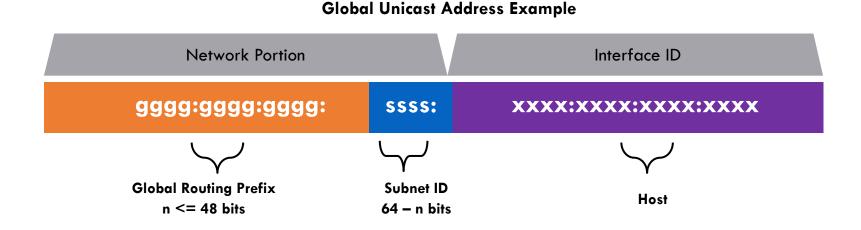
- Your network segments might/will/already extend to DCs/Cloud
 - Maybe mirror them within the DC/Cloud addressing construct
- Security
 - Easily manageable ACL
 - Exposing information about the network (e.g. VLAN number)
- Rate of change and growth
 - Mergers & acquisitions

Obtaining IPv6 Prefix

Types of Unicast Addresses - <u>RFC 4291</u>

- (Node) Loopback Address
- Link-Local Address (LLA) fe80::/10
- Unique Local Address (ULA) fc00::/7
- Global Unicast Address (GUA) 2001::/3
- NOTE: An interface will have multiple IPv6 addresses

Where To Get an IPv6 Prefix?


- IPv6 Prefix (GUA) assigned from:
 - an Local Internet Registry (LIR) typically your ISP (PA prefix)
 - directly from an Regional Internet Registry (RIR) – RIPE in Europe
 - Typical for ISPs and large enterprises which span multiple countries, have dual-homing requirements (have AS number)
 - <u>RIPE IPv6 Address Allocation and Assignment</u>
 <u>Policy</u>
- The minimum Provider Independent (PI) assignment is /48
 - Contractual Requirements for Provider
 Independent Resource Holder in RIPE NCC
 region

- An organisation can request a larger prefix with appropriate documentation of their address usage/need
 - /32 is typical, allocated from a reserved /29 in case of additional need to ensure continuity
- Company operating in multiple region can obtain prefixes from different RIRs
- Out-of-region announcements
 - No RIR policy which would prevent this, check with upstream ISP

What does your Allocation look like?

• Allocated prefix has fixed length, work with the bits between the assigned prefix and the /64 (Interface ID)

• Let go of "conservation" mindset! The IPv6 addressing space is HUGE....

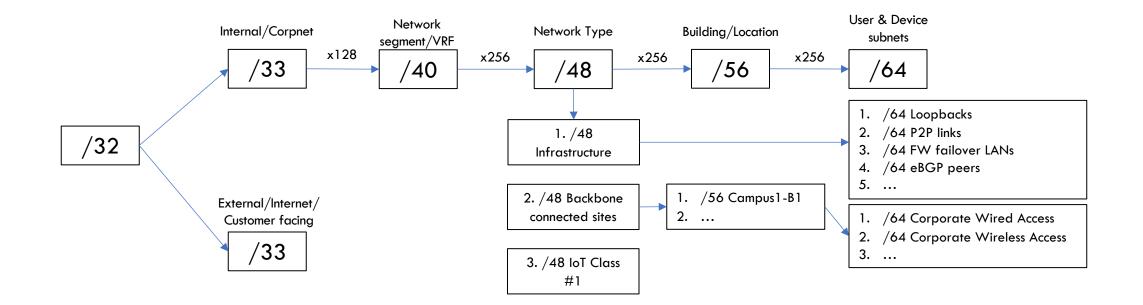
Creating IPv6 Address Plan

Considerations – 1.

- The hierarchy and a well thought-through process will help
 - With operations & troubleshooting
 - Deployment is easy to automate
- Cookie-cutter approach is desirable, think in terms of the number of subnets
 - Number of hosts in is NOT important -/64 for end-point segments
 - Maintain the same structure across regions
 - Base on the highest common denominator, there's plenty of addresses
- Think about your **aggregation** and security enforcement points
 - /48 accepted to announce on the Internet
 - Filtering on specific "nibble"
 - Exposing information about the network (e.g. VLAN number)?

Considerations – 2.

- L2 domain = VLAN = /64
 - Keep L2 domains relatively small
 - NDP is chatty, and dual-stack with ARP can be **pain** for your network devices
- Encoding information within the IPv6 address possible
 - Locations, PINs, services, business units etc.
 - For accounting & administrative reasons, troubleshooting
 - Practices vary Keep it simple!
- Re-addressing can be automated
 - Monitoring is essential


"Nibble" Boundary

- 2001:0db8:1234:5678::/64
 Nibble = 4 bits = 1 HEX character
- Keep the addressing plan tidy
- If you are coming to an existing IPv6 address plan (e.g. after a pilot), it's worth cleaning up and enforce the nibble boundary

Example of /32 Hierarchy

- Comments on a DC/Cloud
 - /48 per DC / Cloud deployment is typical
 - /64 is the least common denominator, Top-of-Rack switches are the L3 boundary

Infrastructure Addressing

Point-to-point Links & Loopbacks

- Current recommendation, <u>RFC 6164</u>, for **Point-to-point links** /127
 - It mitigates ND exhaustion attacks
 - ! In older IPv6 implementations you might see /126 and it's OK !
- Allocate /64 from a block (e.g. /56) but configure:
 - /127 or /112 for multi-access network segments
- Allocate /64 for **Loopbacks** and configure /128
- NOTE: Remember to check how many Longest Prefix Matches (LPM) [/128] your network devices can carry
 - Does not always equal the total number of supported IPv6 prefixes

Closing remarks

IPAM

ULA or not ULA

IPv6 Host Address assignment methods

IP Address Management (IPAM)

- Please, use IPAM
- Let go of Excel spreadsheets $\textcircled{\odot}$
- IPAM can manage IPv6 networks and their AAAA, PTR and host resource records
- Enables you to reserve a specific IPv6 prior to a device deployment
- Possible integration with your network orchestration

ULA or not ULA

- ULA has the lowest priority, below IPv4, so is NOT USED
 - Avoid deploying for end-point addressing in a Dual-stack environment
 - IETF draft <u>Unintended Operational Issues with ULA</u>
- It SHOULD work in **IPv6-only** closed system not requiring Internet access
 - Example: CPEs management address, P2P links, IoT
 - Can your management systems manage over IPv6-only?
- A voluntary registry of SixXS (stopped in June 2017) now re-vived by Ungleich https://ula.ungleich.ch/

Host IPv6 address assignment methods

Stateful DHCPv6

- A host gets IPv6 address fully assigned with DNS and other information too
- Not supported on Android devices
- Stateless Address Autoconfiguration (aka SLAAC)
 - A host receives a Router Advertisement (RA) message (ICMPv6) from a default GW (subnet router)
 - RA provides IPv6 prefix and the hosts follows its implementation of SLAAC
 - EUI-64 or other method (check <u>RFC7721</u>)
 - The host needs to obtain DNS information
 - Stateless DHCPv6 or Recursive DNS Server (RDNSS <u>RFC8106</u>) message
- Manual/Automated (= static)
 - Useful for server deployments which need stable IPv6 addresses
 - Remember: best practice for static IPv6 address assignment is automation avoids human errors ⁽ⁱ⁾

Resources

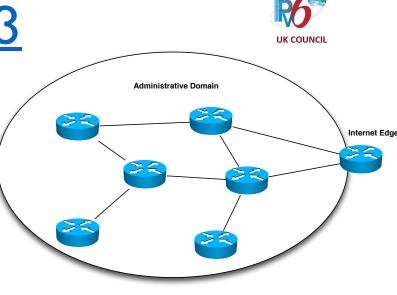
- <u>IPv6 Address Planning</u> Tom Coffeen, O'Reilly, 2014
- <u>Create an Addressing Plan</u> RIPE NCC, 2015
- <u>BRKRST-2667 How to write an IPv6 Addressing Plan</u> Veronika McKillop & Wim Verrydt, CiscoLive, 2016

Appendix

Link-Local Address - <u>RFC 4291</u>

- Range: **fe80::**/10
 - No subnet significance
- Used for communication with hosts on the same link
 - Examples: Stateless Address Autoconfiguration (SLAAC), Neighbor Discovery, Duplicate Address Detection
- For link operation purposes
 - Leveraged by routing protocols and gateways
- Never routed to other links
 - No meaning outside the link

- Typically, first 64 bits are fixed, only Interface Identifier is modified
- Example: fe80::0224:d7ff:fe2c:7831


Global Unicast Address - <u>RFC 3587</u>

- Globally unique and routable
 - Defined for use across the IPv6 Internet
- Primary goal is to provide plenty of globally accessible addresses
- Reserved and identified by high-level 3 bits set to "001"
 - Range: 2000::/3
- Global IPv6 Prefix received from an LIR or RIR
- Presence in Global Routing Table
 - Aggregation is critical
 - Hierarchical assignment enforced through IANA allocation policy
- Example: 2001:420:0:1::1

Unique Local Address - <u>RFC 4193</u>

- Range: **fc00::/7**
 - Currently used fd00::/8
- Globally unique address for local communications
- 40-bit global ID generated using a pseudo-random algorithm
- Not designed to be aggregated
- Not expected to be routed on the Internet but routable within an **administrative domain**
- Scope needs to be managed
 - ACLs and Prefix lists
 - Your upstream ISP will filter it anyway
- Example: fd68:df3d:80ee::/48 (LACNIC)

Unique-Local (ULA) – fc00::/7

Host Addresses on IPv6-only Network

Wireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix .:	
Description Marvell AVASTAR Wireless-AC Network Controller	
Physical Address	
DHCP Enabled Yes	
Autoconfiguration Enabled : Yes	
IPv6 Address	
Temporary IPv6 Address : 2a01::cdee:aec2:65d4:c268(Preferred)	
Link-local IPv6 Address : fe80::711e:55df:3bd1:bc41%3(Preferred)	
Autoconfiguration IPv4 Address : 169.254.188.65(Preferred)	
Subnet Mask	
Default Gateway : fe80::200:5eff:fe00:240%3	
DHCPv6 IAID	
DHCPv6 Client DUID	
DNS Servers	
2a01:fe::6464	