

School of Electronics and Computer Science

IPv6 and IoT UK IPv6 Council Enterprise & IPv6 Workshop London, 24th of April 2023

Dr Graeme Bragg gmb@ecs.soton.ac.uk Electronics & Computer Science University of Southampton

What do I mean by IoT?

School of Electronics and Computer Science

Internet of Things

Things:

Internet:

and can be interacted with remotely (but not necessarily over the Internet)

The Home-Automation IoT Landscape

School of Electronics and Computer Science

♦ There are lots of technologies and systems out there...

Internet Without an IP Address?

 A lot of technologies used for IoT don't give devices a globally unique ID or address

 Manufacturer-specific hubs with proprietary control software and cloud services are common.

Solution For many deployments, devices cannot be interacted with directly...

Globally Accessible with IPv4?

School of Electronics and Computer Science

 \otimes My hot take:

IPv4 is holding back IoT

♦ The lack of addresses encourages centralised, proprietary solutions that can't interact with each other.

♦ The prevalence of NAT, and now CG-NAT, makes directaccess harder.

♦ We are sitting on a potential e-waste mountain of locked-down IoT devices...

Is IPv6 the Answer?

School of Electronics and Computer Science

Partially

It helps solve the addressing/accessibility problem
 BUT how do you give an IPv6 address to a low-power, low-performance battery operated device?

♦ AND we still have an application layer problem.

6LoWPAN

School of Electronics and Computer Science

♦ IPv6 over 802.15.4 radio links.

♦ 802.15.4 only has 127-byte frames, so 6LoWPAN relies on fragmentation and header compression.

♦ Header Compression:

♦ 48-bytes of IPv6 and UDP headers compress to 6 bytes

♦ Relies on assumptions and link-layer addresses

Multi-hop mesh networking is possible with RPL routing

Mountain Sensing

School of Electronics and Computer Science

 A 2014/15 NERC-funded proof-of- concept project to deploy an IoT sensor network in the highlands of Scotland.

Sensor nodes were microcontrollerbased and battery powered

Mountain Sensing Deployment

School of Electronics and Computer Science

- ♦ We achieved 3km+ low-power IPv6 radio links...
- ♦ In a deployment ~5km across using microcontrollers and a mesh network

DTM data from NEXTMap British Digital Terrain Model Dataset Produced by Intermap. NERC Earth Observation Data Centre and map data Crown Copyright Ordnance Survey.

Mountain Sensing: Results

School of Electronics and Computer Science

- The first published sub-GHz, 6LoWPAN environmental sensor network.
- Demonstrated that low-power, IPbased sensor networks can be used for real-world deployments.
- Gathered years of data that gave never-before-seen insights into natural processes.

Thread

School of Electronics and Computer Science

- A royalty-free open industry standard designed for connected home applications.
- Certification (and use of the logos on products) requires membership
- Open-source implementation: OpenThread
- Used by Google Nest, Apple HomePod Mini, Amazon Eero, and a whole host of home and industrial automation products from Siemens, SmartThings, Eve, Aqara, Tuya, etc.

Thread: the Tech

School of Electronics and Computer Science

♦ IP-based, encrypted, self-healing, resilient mesh networking

 \Leftrightarrow Based on 802.15.4 and 6LoWPAN

♦ Uses UDP with DTLS for transport

Security and Commissioning occur throughout the Thread stack

Matter

School of Electronics and Computer Science

 An open-source protocol standard for IoT and smart home applications.

♦ Version 1.0 published 10/2022, version 2 imminent.

 Already integrated into Amazon Alexa, Apple Home, Google Home, and Samsung SmartThings

♦ Devices expected soonTM. Many devices announced at CES 2023.

Matter: Just Another Standard?

School of Electronics and Computer Science

No:

- Matter is a unifying application layer standard that leverages existing communications standards
- Non-Matter devices can be bridged into a Matter network
- Most of the big players in the home automation scene are onboard and have already added support to their hubs via software update

Matter: The Concept

Before Matter

/

With Matter

School of Electronics and Computer Science

Slide 15

Matter: The Tech

School of Electronics and Computer Science

- Runs on top of Thread, Ethernet and WiFi
 - Support for IPv6 for BLE is planned
- Relies on IPv6 for operational communications
- Leverages multicast support for group control
- Multi-Admin support multiple controllers can control the same matter devices

School of Electronics and Computer Science

♦ IPv4 is encouraging a disjointed, proprietary IoT landscape with a significant potential e-waste problem.

♦ IPv6 enables innovative Internet of Things applications and is a building block in a more open, compatible and secure IoT future.

♦ Home automation is embracing technologies that *require* IPv6.

School of Electronics and Computer Science

Fin

Questions?