IPv6 Security & Myth Busting

Fernando Gont

"Enterprise & IPv6" Workshop, UK IPv6 Council. London, UK. April 24th, 2023

About...

- Security Researcher and Consultant
- Published:
 - 35+ IETF RFCs (15+ on IPv6)
- Author of the SI6 Networks' IPv6 toolkit
 - https://www.si6networks.com/tools/ipv6toolkit
- More at: https://www.gont.com.ar

Motivation for this presentation

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Motivation for this presentation

- Lots of myths around:
 - Security was considered during the design of the protocol
 - Network security paradigm will change from network-centric to host-centric
 - IPv6 will lead to increased IPsec usage
 - IPv6 will recover the "end-to-end" properties of the Internet
- All them have a concrete negative effect:
 - They set incorrect expectations
 - They usually result in deployments that overlook security

General considerations about IPv6 security

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Interesting aspects of IPv6 security

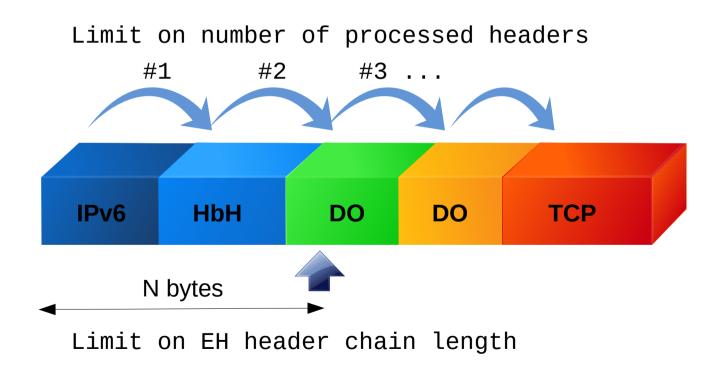
- We have much less experience with IPv6 than with IPv4
- IPv6 implementations are much less mature than their IPv4 counterparts
- Security products (firewalls, NIDS, etc.) have less support for IPv6 than for IPv4
- Increased complexity in the resulting Internet:
 - Two inter-networking protocols (IPv4 and IPv6)
 - Increased use of NATs
 - Increased use of tunnels
- Lack of trained human resources

...but even then, IPv6 is the only option on the table to remain in this business

IPv6 Extension Headers

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Introduction


- IPv6 options are included in "extension headers"
 - They sit between the IPv6 header and the upper-layer protocol
 - There may be multiple instances, of multiple extension headers, each with multiple options
- Hence, IPv6 follows a "header chain" type structure. e.g.,

Processing IPv6 Extension Headers

• EH Processing limits

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Processing IPv6 Extension Headers (II)

- Possible options in the presence of implementation limits:
 - Punt the packet to the general purpose CPU \rightarrow DoS
 - Pass the packet \rightarrow circumvention of security controls
 - Drop the packet \rightarrow unreliability in packets with EHs
- Many implementations do #1 or #2 :-(

Security Implications of Extension Headers

- Evasion of security controls
- DoS due to processing requirements
- DoS due to implementation errors
- Extension Header-specific issues

Advice on Extension Headers

- Analyze your EH requirements
- Block IPv6 packets with unexpected EHs

- Some had the expectation that IPv6 would foster IPsec usage
 - The "Node Requirements" RFC used to require IPsec implementation
 - Most implementations were non-compliant
 - The requirement was eventually removed
- So... no changes to be expected with respect to IPv4
- Or, actually...

Many networks filter packets that contain IPsec EHs, thus making it rather unreliable

IPv6 Addressing

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

IPv6 Addressing Introduction

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Introduction

- The main driver for IPv6 is its larger address space
- IPv6 addresses are 128-bit long
- IPv6 hosts simultaneously employ **multiple** addresses of:
 - Different scope (link-local, global, etc.)
 - Different type (unicast, multicast, etc.)
 - Different lifetime (stable, temporary)
- IPv6 subnets are typically a /64

n bits	m bits	128-n-m bits
Global Routing Prefix	Subnet ID	Interface ID

• Where:

- GRP: As delegated by the upstream provider or RIR (same as in IPv4)
- Subnet ID: Same as in IPv4
- Interface ID (IID): Analogous to IPv4's Host-ID

How are IPv6 IIDs generated

- Manually
 - Embed the IPv4 address (e.g. 2001:db8::192.168.1.1)
 - Low-byte (e.g. 2001:db8::1, 2001:db8::2, etc.)
 - Wordy (e.g. 2001:db8::dead:beef)
- Automatically
 - Embed the underlying MAC address ~ original standard
 - F(Prefix, secret) ~ current standard
 - Generated by a DHCPv6 server (implementation-specific algorithm)

IPv6 Addressing Address Scanning

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Introduction

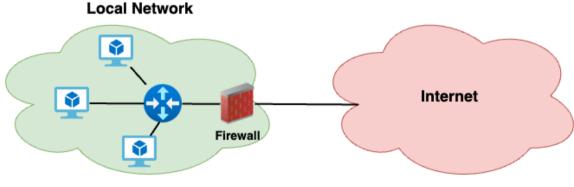
- Feasibility of successful address scans depends on IID type:
 - Randomized IIDs \rightarrow Search space == $2^{64} \rightarrow$ unfesible
 - Pattern-based IIDs \rightarrow Search space << 2⁶⁴ \rightarrow feasible
- Some considerations:
 - There's different mechanisms/algorithms for IID generation
 - Different scenarios employ different mechanisms/algorithms

IPv6 address scanning in practice

- Workstations & mobiles:
 - SLAAC \rightarrow randomized addresses \rightarrow unfeasible
 - DHCPv6 \rightarrow pattern-based addresses \rightarrow feasible
- Servers (bare-metal, virtual):
 - Manual configuration \rightarrow pattern-based addresses \rightarrow feasible
 - DHCPv6 \rightarrow pattern-based addresses \rightarrow feasible
 - SLAAC \rightarrow unfeasible

Advice on IPv6 address scanning

- Network reconnaissance is a key phase of every attack
- Making the attacker's life more difficult is always useful
- There may be limitations and/or trade-offs involved:
 - Enterprise may rely on a specific DHCPv6 vendor
 - Cloud provider may assign predictable addresses via DHCPv6
 - Organization may employ a specific pattern for server addresses


IPv6 Addressing End-to-End Connectivity

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

IPv6 deployment model

- IPv6 can provide public (global) IPv6 addresses to every device
- This does not need to imply "End-to-End connectivity"
- Suggested deployment model:

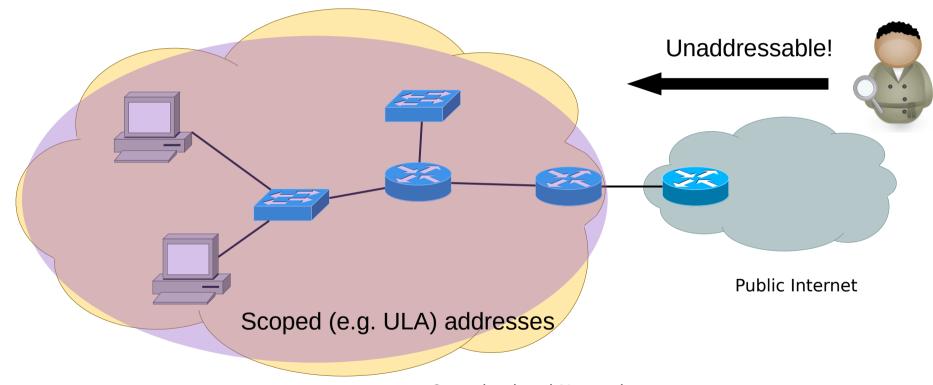
IPv6 Global Unicast Addresses (GUA) Space

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Suggested enterprise security policy

- Only allow outgoing communications (and return traffic)
- Where necessary & possible:
 - Use temporary addresses along with stable addresses
 - Allow incoming connections only to specific sable addresses

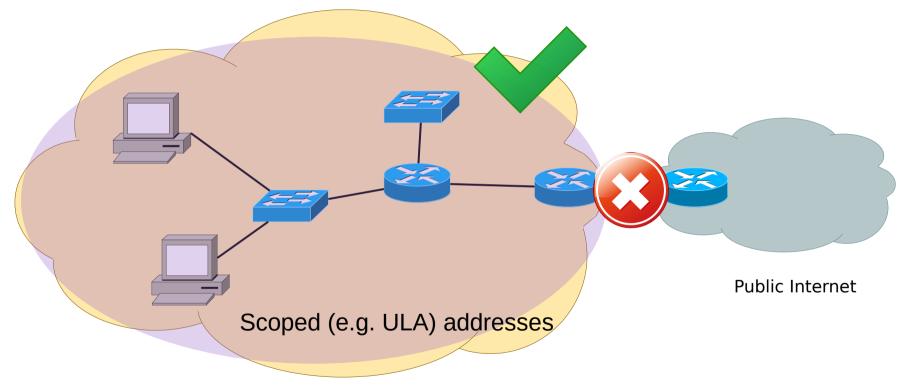
IPv6 Addressing Unique Local Addresses (ULAs)



Address Scope Security Properties

- A non-global scope may provide "prophylactic" security
 - Address "filtering" as a result of limited address scope
- Orthogonal to other filtering mechanisms

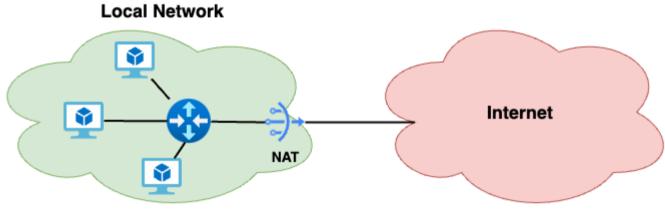
Address Scope Security Properties: Isolation



Organizational Network

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Address Scope Security Properties: Stability


Organizational Network

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

More controversial use cases

- Some deployments mimic the IPv4 architecture
- Motivation: well-understood model

IPv6 Unique Local Addresses (ULA) Space

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

IPv6 Addressing Host-centric vs. Network-centric Security Paradigm

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Changes in the security paradigm?

- Some predict that IPv6 hosts will not rely on network-based controls
- But IPv4 does not really rely on a network-centric paradigm!
- IPv6 will implement both host-based and network-based controls:
 - They provide different layers of protection (defense in depth)
 - This is even more critical in the IoT-era
- No changes with respect to the IPv4 world, actually!

IPv6 Addressing Enforcing Access Control Lists (ACLs)

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Introduction

- Access Control Lists are a core component of security operations
 - Allow-lists:
 - Meant to allow access to a resource from a prefix
 - Block-lists:
 - Meant to block access to a resource

What is behind an IPv6 prefix?

- Multiple addresses may map to a single host
 - Hosts typically configure multiple addresses
 - Addresses are typically selected from a /64
 - But a user might control a larger address block (e.g. a whole /48)
- A single IPv6 address may map to multiple hosts
 - NAT-PT for IPv6 is not uncommon
 - Kubernetes typically do IPv6 ULAs + NAT
- All these aspects are key when implementing IPv6 ACLs

IPv6 Allow-lists: Challenges

- Use of temporary addresses (RFC8981) means:
 - Addresses change on a regular basis
 - Addresses from multiple hosts may be intermingled in the same /64
- So...What should we "allow"?
- If specifying /128s, the ACLs might fail

IPv6 Block-lists: Challenges

- Quite often, these are dynamically introduced as /128s, via e.g.:
 - SIEM/IPS
 - fail2ban
 - IP reputation services (e.g., abuseipdb.com)
- But...what should we "block"?
- If blocking /128s, a skilled attacker might:
 - Intentionally exhaust the number of entries in your block-list
 - Circumvent the block-list (i.e., use *throw-away* IPv6 addresses)

IPv6 Allow-lists: Guidance

- Employ stable addresses (only):
 - Use:
 - manual configuration, or,
 - DHCPv6, or,
 - SLAAC & disable temporary addresses (e.g. via group policies)
 - Specify allow-lists as /128s
- Embrace temporary addresses usage:
 - Segregate systems into different subnets
 - Specify allow-lists as, e.g., /64s

IPv6 Block-lists: Guidance

- If block-lists are dynamically-generated:
 - May need to dynamically aggregate ACLs
 - Possibly adjust the ACL lifetime based on the aggregation level

IPv6 Block-lists: Guidance (II)

• One possible implementation for dynamic block-lists:

LEVEL	PREF_LEN	AGGR_THRES	ACL_LIFETIME
1	/128	10	1 hour
2	/64	10	1 hour
3	/56	10	30 min
4	/48	N/A	15 min

"Where possible, agregate at least AGGR_THRES_N LEVEL_N ACLs into a single LEVEL_(N+1) ACL. Remove this new ACL after ACL_LIFETIME_(N+1)"

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

IPv6 Automatic Configuration

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Overview

- IPv6 supports to automatic configuration mechanisms:
 - SLAAC (mandatory)
 - DHCPv6 (optional)
- IPv6 is a bit of "Configuration Anarchy":
 - No IPv6 address lease database (no leases, actually!)
 - Hard to predict configuration outcome (except via ad-hoc domain policies)
- DHCPv6 tends to be more Enterprise-friendly:
 - Matches DHCPv4 behavior
- But... Android does not support DHCPv6

Automatic Configuration: Deployment alternatives

- Provide different networks for mobiles vs. workstations
 - SLAAC for mobiles
 - DHCPv6 for everything else
- MAC ↔ IPv6 address correlation:
 - DHCPv6: "Built in"
 - SLAAC: Use NDP monitoring to build IPv6 address lease database
 - May also want to disable temporary addresses via domain policies.

Security implications of automatic configuration

- IPv6 security controls should match their IPv4 counterparts
- Do you implement ARP and DHCPv4 security controls?
 - No \rightarrow No need to mitigate their IPv6 counterparts
 - Yes \rightarrow Deploy RA-Guard, DHCPv6-{Snooping, Shield}, FHS, and the like
- If you do deploy security controls:
 - Enforce controls for SLAAC, DHCPv6 and ND
 - Beware of evasion via IPv6 extension headers!

Security implications of IPv6 on IPv4 Networks

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Can IPv6 security be ignored for IPv4-only networks?

- IPv6 support is typically enabled by default for all general OSes
 - i.e., most networks have at least partial IPv6 deployment
- IPv6 security **cannot** be ignored for such "IPv4-only" networks

VPN leakages

- VPN leakages may occur when VPN software lacks IPv6 support
- Typical scenario:
 - Your VPN software does not support IPv6
 - You attach to a network that supports IPv6
 - You establish a VPN tunnel with your home/office
 - All IPv6 traffic leaks from the VPN
- Even in 2023, some vendors are still failing in this area

Questions?

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

Thanks!

Fernando Gont fgont@si6networks.com

IPv6 Hackers mailing-list

http://www.si6networks.com/community/

www.si6networks.com

"Enterprise & IPv6" Workshop London, UK. April 24th, 2023

