Removing IPv4 infrastructure addressing from Meta's edge network

UK IPv6 Council London, 21st November 2023

Nick Chettle Network Engineer

FACEBOOK Infrastructure

Agenda

Introduction and Motivation

Approach

Lessons Learned

Q&A

Introduction and Motivation

Meta Networks

Traffic between users and Meta is over IPv6. Edge network dual-stacked.

Internal traffic is over IPv6

Source: facebook.com/ipv6

Source: Internal report

Edge Network - Dual Stack

- Traffic is a mix of v6 and v4.
- Server to ToR addressing is v6 only, v4
 VIPs announced via v6 BGP sessions with v6 next-hop (RFC5549/8950)
- Other infrastructure links are dualstacked, dedicated v4 and v6 addresses and BGP sessions.
- Links to peers are dual-stacked if peer supports it.

Why do anything more?

Motivation

Simplification

Maintaining two sets of address families increases engineering and operational overhead.

Scale

Our edge network infrastructure is sufficiently large that we have run into scaling problems with IPv4 addressing.

Planning Overhead

IPv4 is a valuable and finite resource, wherever used it needs to be carefully planned. Avoiding using it removes this need entirely.

Approach

Edge Network - v6 only linknets

- Server to ToR addressing is v6 only already, nothing further needed.
- Enable v4 address family over existing v6 sessions.
- Remove IPv4 BGP sessions and IPv4 addressing from all affected links.

Dual Stack

RFC 5549/8950

What about traceroute?

- Typically routers will send TTL expired message sourced from the IP address associated with the outbound interface towards the sender.
- If the interface no longer has an IPv4 address, what happens?
 - The router will reply using the loopback address.
- RFC8335 and RFC5837 improving ping/traceroute.

Timeline

PR layer

Lessons Learned

ECMP not that equal

- Inter-layer connectivity is fully-meshed, many ECMP paths.
- Some routers would not do ECMP between paths learnt with v4 and v6 next-hop, even if all other BGP attributes matched. Vendor specific behaviour.
- Needed to increase the weight of the routes with v4 next-hop, until all v4 NLRI had been learnt via v6 sessions.

Some v4 just dropped

- Some router platforms would drop v4 packets if they didn't have a v4 address configured.
- Needed additional command to forward v4 traffic without a v4 address.
- This was not consistent across platforms, even from the same vendor.

Interface counters not consistent

- Platforms reported counters in different ways.
- Some platforms would report v6/v4 counters in a single direction only.
- Some would report total and v6 so we needed to subtract the v6 number from total to derive v4.

• Important to test this!

01

RFC5549/8950 works

v4 NLRI with v6 next-hop works, we're running it in production

02

Need to test

There were some hurdles along the way, no show stoppers but important to understand platform and vendor behaviour 03

It's worth it

Simplified configurations, provisioning workflows and planning

Thank You!

