
Mission ImPossible
Turning IPv4 Off in an Enterprise Network

Image source: https://freesvg.org/magical-unicorn

Jen Linkova, furry@google.com

Motivation

Running out of private IPv4 addresses

Dogfood and testing

Dual stack is hard

"Entities should not be multiplied without necessity."

William of Ockham 2

Source: www.wikipedia.org

https://en.wikipedia.org/wiki/File:William_of_Ockham.png

Network Overview
● SLAAC-only (no DHCPv6 for address assignment)

● NAT64/DNS64 to access IPv4-only destinations

○ NAT64 at the site edge

○ Router Advertisements options for DNS64 and PREF64

● Centralized DHCPv4 infrastructure

● Wired ports: 802.1x + dynamic vlan assignment

Previously on…

2020: IPv6-only Guest WiFi and wired networks

Dedicated IPv4-enabled SSID and wired vlan for

fallback

Reclaimed a lot of IPv4 addresses

More details: “The Day I Broke All the Treadmills” RIPE81 presentation

https://ripe81.ripe.net/archives/video/417/

IPv6-Only Guest: Lessons Learned
Dedicated SSID/VLAN: not a good idea

● Confusing for users
● Higher IPv4 consumption
● Lower visibility to issues
● Scalability concerns
● Operational complexity

We need something better!

IPv6-mostly Network
A network enabling co-existence of IPv6-only and IPv4-enabled devices

Client Indicates IPv6-only Capability

Server checks if the given network
supports IPv6-only clients

IPv6-Only Capable client on
IPv6-Only capable network

No IPv4 allocated
All other cases:
IPv4 Allocated

RFC8925: Use DHCPv4 to Turn IPv4 Off

464XLAT (RFC6877)
DNS64 doesn’t help if applications:

● Do not use DNS (“IPv4-literals)

● Only lookup IPv4 addresses

● Fail to operate w/o IPv4 address

● Uses DNSSEC

Solution: 464XLAT
● Provide applications with a private IPv4

address

● needs NAT64 only, no need for DNS64

○ DNSSEC-compatible

Project Scope

Network Infrastructure across all offices globally:
● Corporate WiFi and IPv4-enabled (fallback) Guest WiFi
● Wired user-facing segments

Devices migrated to IPv6-Only:
● All Android, iOS (15+), MacOS 13+

○ send DHCPv4 Option 108
○ support 464XLAT and PREF64

● Opt-in for selected ChromeOS and Linux devices

Rollout Schedule: March - Nov 2023

● Pilot in 3 locations for 2 months

● Extended pilot in 5 locations for 1 month

● “Stop the bleeding”: enable IPv6-mostly for greenfields

● Incremental rollout in 4 months, enabling Option 108 per

subnet (10, 15, 25, 50, 60, 70, 80, 90, 100% of all networks)

WE ARE HERE

Results

● No blocking issues found

○ A few cosmetic issues: all fixed in MacOS Sonoma

● DHCPv4 utilization drops by 3-4 times (average) on WiFi

● Expecting to reclaim at least 300K addresses

A Random Network: DHCP Utilization Drop
/19 downsized to /22: 7K addresses saved

Lesson Learned #0

The only way to get IPv6 deployed:

 to run out of (private) IPv4

Lesson Learned #1: “You Know Nothing, Jon Snow”

You do not really operate IPv6 until you turn IPv4 off

● Happy Eyeballs hide the problems
○ “My workstation loses IPv6 DNS for a few mins after

waking up”

● Users do not report issues

● Issues are not getting fixed

Discovery #1: Duck Host Test

tethered system Tethered system

10.0.0.0/24

Nat 10.0.0.0/24 <> 192.0.2.100

Dual-stack network segment
192.0.2.0/24, 2001:db8:1::/64

192.0.2.100 2001:db8:1::192

A device which
looks like a host

and
behaves like a host,
it’s probably a host

..or is it a router?

tethered system Tethered system

10.0.0.0/24

Nat 10.0.0.0/24 <> 192.0.2.100

dual-stack network segment
192.0.2.0/24, 2001:db8:1::/64

192.0.2.100 2001:db8:1::192

tethered system Tethered system

10.0.0.0/24

Nat 10.0.0.0/24 <> 192.0.2.100

IPv6-mostly network segment
2001:db8:1::/64

192.0.2.100 2001:db8:1::192

IPv6-mostly
migration

Broken connectivity

Solution: DHCPv6-PD

tethered system Tethered system

2001:db8:dddd::/64

DHCPv6-PD client
Received delegated prefix

2001:db8:dddd::/64

2001:db8:1::/64

2001:db8:1::192

DHCPv6
Server

DHCPv6-PD
request
for /64

Other Interesting Issues (see Appendix)
● IPv6 disabled (or set to link-local) on endpoints
● Extension Headers blocked: Fragmentation and ESP
● ESP/IPSec: various issues with firewalls/NAT64
● Devices with 10+ IPv6 addresses: blocked by WiFi
● Clients moving between VLANs (renumbering)

○ Rule 5.5 of Default Address Selection is crucial
● Devices losing IPv6 in 5 secs after RAs

○ WiFi APs getting ND proxy wrong..
● Packets from 192.0.0.2 on wire (fixed)
● Traceroute to ipv4 addresses: only ‘*’ (work in progress)

RFCs Published
● RFC 8781

○ Discovering PREF64 in Router Advertisements
● RFC 8925

○ IPv6-Only Preferred Option for DHCPv4
● RFC 9131

○ Gratuitous Neighbor Discovery: Creating Neighbor
Cache Entries on First-Hop Routers

https://datatracker.ietf.org/doc/html/rfc8781
https://datatracker.ietf.org/doc/html/rfc8925
https://datatracker.ietf.org/doc/html/rfc9131

New Drafts
● Using DHCPv6-PD to Allocate Unique IPv6 Prefix per

Client in Large Broadcast Networks
(draft-ietf-v6ops-dhcp-pd-per-device)

● 464 Customer-side Translator (CLAT): Node
Recommendations (draft-link-v6ops-claton)

● Using Subnet-Specific Link-Local Addresses
(draft-link-v6ops-gulla)

https://datatracker.ietf.org/doc/draft-ietf-v6ops-dhcp-pd-per-device/
https://datatracker.ietf.org/doc/draft-link-v6ops-claton/
https://datatracker.ietf.org/doc/draft-link-v6ops-gulla/

Next Steps

2024: Migrate ChromeOS and Linux endpoints

ChromeOS 114 and above

QUESTIONS?

Appendix
(Time-Permitting Slides)

Lesson Learned #2: Extension Headers

Make sure Extension Headers are permitted

Especially

● Fragment Header
● ESP Header

○ Used by IPSec
■ VPNs
■ WiFi Calling

On the Importance of Checksum

NAT64 and IPv4 UDP packets with zero checksum:

Corrupted IPv6 checksum

Unexpected journey: 'there and back again'

Firewalls permitting outgoing IPSec traffic

….do not create the state for the return traffic

…for there are no ports!

Discovery #3: Fragmentation Strikes Back

IPv4 packet
1500 bytes

DF=0 NAT64

IPv6 packet
with fragment header

Fragment offset 0

IPv6 packet
with fragment header

Fragment offset X
IPv4 network, MTU 1500 IPv6 network, MTU 1500

Caveats:
some NAT64 platforms use “1280” as a default size for

translated packets instead of IPv6-only interface MTU.

Lesson Learned #3: Don’t Disable IPv6

● “just disable IPv6 and see if it helps” wasn’t a good

idea.

● Had to automate enabling IPv6 on managed devices

● No way to fix it at scale for BYOD

Host addresses: link-local, temporary, stable, 464XLAT

More addresses in case of virtual systems (ChromeOS: up to 20)

IPv6 addresses randomly lose connectivity

WiFi APs limit number of IPv6 addresses/client (limit can be as low as 7)

Discovery #4: Hidden Limits

IPv6-only
client

IPv6-mostly
wired network

802.1x authentication

Port placed into VLAN A

Router Solicitation

Router Advertisement
PIO: 2001:db8:aaaa::/64

Client forms an address
2001:db8:aaaa::f00

802.1x authentication

Port placed into VLAN B

Router Advertisement
PIO: 2001:db8:bbbb::/64

Client forms an address
2001:db8:bbbb:f00

Client has two addresses
2001:db8:aaaa::f00 and 2001:db8:bbbb:f00

Client is
on VLAN A

Client is
on VLAN B

packet from
2001:db8:aaaa::f00

dropped

Discovery #5.1
Renumbering Case

Detecting Network Attachment (RFC6059)
HOST NETWORK

Router advertisement
src mac: MAC1 scr IP: fe80::1

Prefix: 2001:db8:1::/64

Unicast Neighbor Solicitation
to MAC1 for IP fe80::1

Host roams to another WiFi AP, same SSID

Neighbor Advertisement
from MAC1/ IP fe80::1

Client forms an address
2001:db8:1::f00

Default gw: fe80::1, MAC1

?? Am I still connected to the same IP
link? Have my gateway’s MAC and IP

changed??

“Oh, I’m on the same network!
Ill keep the addresses then!”

The host should send a Router Solicitation and check that /64 is the same but….

VRRPv3

All segments with the same VRRP ID
have the same virtual router MAC

Some implementations violate “MUST”

Router Interface 1 configuration

subnet 2001:db8:1:cafe::/64

vrrp-id 101

Router Advertisement

src mac: 00-00-5E-00-02-{101}
src ip: fe80::200:5eff:fe:02{101}

Discovery #5.2 Roaming Case

Office
building#1

Office
building#2

Corporate WiFi SSID
Vlan 10

VRRP ID: 101
subnet:2001:db8:1:10::/64

Corporate WiFi SSID
Vlan 10

VRRP ID: 101
subnet:2001:db8:2:20::/64

gw ip: fe80::200:5eff:fe:02{101}
Gw mac: 00-00-5E-00-02-{101}

IP address: 2001:db8:1:10::cafe

Mobile host

gw ip: fe80::200:5eff:fe:02{101}
Gw mac: 00-00-5E-00-02-{101}

IP address: 2001:db8:1:10::cafe

roaming

Default gateway IP and MAC didn’t change, so
the host is keeping old addresses

IPv6-only client IPv6-mostly network

Router Advertisement
from fe80::a

PIO: 2001:db8:aaaa::/64
Client forms an address
2001:db8:aaaa::f00
next-hop: fe80::a

Router Advertisement
from fe80::b

PIO: 2001:db8:bbbb::/64Client forms an address
2001:db8:bbbb:f00, next-hop fe80::b

Client has two addresses
2001:db8:aaaa::f00, next-hop fe80::a
2001:db8:bbbb:f00, next-hop fe80::b

Client’s on
VLAN A

Client’s on
VLAN B

Client moves to vlan B

Neighbor Discovery
for fe80::a

failure

next-hop: fe80::b
Packets from 2001:db8:bbbb::f00

Solution:
RFC6724,
Rule 5.5

next-hop fe80::a masked as unreachable

“Globally Unique” Link-Local Addresses

Router Interface 1 configuration

subnet 2001:db8:1:cafe::/64

vrrp-id 101

Router Advertisement

src mac: 00-00-5E-00-02-{101}

src ip: fe80::200:5eff:fe:02{101}

Router Interface 1 configuration

subnet 2001:db8:1:cafe::/64

vrrp-id 101

virtual-link-local: fe80::2001:db8:1:cafe

Router Advertisement

src mac: 00-00-5E-00-02-{101}

src ip: fe80::2001:db8:1:cafe

Before: configure VRRP group ID only, link-local VIP encodes ID

After: configure subnet 64 bit prefix as interface-id for link-local VIP

The Curious Case of Rip Van Winkle

● “My workstation loses IPv6 DNS for a few mins after

waking up”

● Rootcause:

○ Router lifetime and RDNSS lifetime: 3600 secs

○ Device sleeps for > 1hr

○ A bug in the OS: DNS expires, the router is not!

Disappearing Routers

● Device loses IPv6 connectivity soon after connecting

● Obtain it back in a matter of minutes, loses it again

● Root cause:

○ WiFi AP with ND proxy: clears ‘R’ bit in NA

